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Abstract. A detailed derivation of the frozen-orbital
second-order perturbation theory (MP2) analytic gra-
dient in the spin-orbital basis is presented. The sum-
mation ranges and modification of the MP2 gradient
terms that result from the frozen-orbital approximation
are clearly identified. The frozen-orbital analytic gra-
dients for unrestricted MP2 and closed-shell MP2 are
determined from the spin-orbital derivation. A discus-
sion of useful implementation procedures is included.
Timings from full and frozen-orbital MP2 gradient cal-
culations on the molecule silicocene (the silicon analog
of the sandwich compound ferrocene) are also presented.

Keywords: Analytic derivative — Moller-Plesset
perturbation theory — Frozen core

1 Introduction

The analytic expression for the derivative of the full sec-
ond-order perturbation theory (MP2) energy (all electrons
correlated) with respect to nuclear coordinate displace-
ment for closed-shell systems has long been known [1]. In
addition, perturbation theory with unrestricted wave-
functions has been used to describe open-shell systems for
many years. With the development and implementation
of more efficient methodology and algorithms [2] has
come the widespread use of MP2 gradients to include the
effects of dynamic electron correlation in the determina-
tion of molecular structure. The recent development of
parallel algorithms [3, 4] has greatly extended the size of
the systems to which the method can be applied.
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Usually, the effects of including dynamic correlation
in the inner shell or core electrons of a molecule are
minimal in terms of relative energies and geometry
parameters, and therefore core electrons are often not
included in the perturbation treatment; this is known as
the frozen-core approximation. In addition to an asso-
ciated reduction in computational effort [2], the frozen-
core approximation can be preferable to full MP2, as the
description of core electrons is of lower quality than the
description of valence electrons in many basis sets. Vir-
tual orbitals may also be frozen or ‘““deleted’’; this cor-
responds to neglecting the excitations into these orbitals.

The modification of the MP2 energy expression to
exclude electrons in frozen core or virtual orbitals is a
trivial matter which requires simply that the summation
over the orbitals excludes those chosen to be frozen.
Using the notation defined in the next section, the
frozen-orbital MP2 energy expression is

act vact

ED = 03N (iallip)Tg

ij ab

(1)

where an amplitude in the spin-orbital basis is defined as

T3 = (ialljb) /D5 (2)
where

(ial|jb) = (ia|jb) — (ibja) (3)
and

D;‘jbzal-+8j—sa—8;,. 4)

The reduction in the number of transformed two-
electron integrals required in Eq. (1) results in a reduc-
tion of the computation time needed for the calculation.
Although the modification required for the MP2 energy
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expression is minor, that for the MP2 analytic gradient
expression is far from trivial and involves so-called
dependent-pair contributions.

Groundwork for the treatment of frozen-orbital
dependent-pair contributions, as well as other types of
dependent-pair contributions, to analytic energy gra-
dients was carried out in the mid 1980s [5, 6]. Since then,
these techniques have been further developed and
applied to numerous correlated methods [7, 8, 9, 10, 11,
12, 13, 14, 15]. For example, Rice et al. [5] and Lee at al.
[8] have discussed dependent-pair contributions in con-
figuration interaction methods, while Scheiner et al. [7],
Rice et al. [9], Rendell and Lee [10], and Lee and Rendell
[11] have discussed such contributions in coupled-cluster
methods. More recently, some of the complications in-
volved in frozen-core analytic energy gradient methods
for various coupled-cluster and perturbation theory
methods have been briefly discussed by Baeck et al. [13]
and the derivation of the frozen-orbital closed-shell MP2
gradient expression has been presented by Lee et al. [14]
and Webb et al. [15]. However, no explicit derivation of
the analytic frozen-orbital spin-orbital or unrestricted
MP2 (UMP2) gradient expression is currently available
in the literature, even though UMP2 gradients have
previously been implemented in various electronic
structure programs.

The aim of this overview is twofold. The first is
to present a detailed, step-by-step, derivation of the
analytic frozen-orbital spin-orbital gradient expression
and subsequent spin-integration to UMP2 and MP2
expressions, in order to provide a pedagogical application
of dependent-pair techniques that is useful to new
researches in this field. The second goal is to present the
UMP2 frozen-orbital gradient expression in sufficient
detail to facilitate serial and parallel implementation in
electronic structure codes such as GAMESS [16].

2 Notation, definitions, and techniques

The notation, definitions, and techniques that will be
used extensively during the course of the derivation of
the MP2 frozen-orbital gradient are introduced. Con-
siderable use is made of the excellent book by Yama-
guchi et al. [17].

2.1 Notation

The indices, summation ranges, and symbols used
throughout the derivation are summarized here.

Indices

— J, K: frozen-core molecular orbital (MO).
— 1, j, k, I any occupied MO.

— a, b, ¢: any virtual MO.

— B, C: frozen virtual MO.

- p,q, 1,8 t: any MO.

— u,v,A,0: atomic orbital (AO).

— Superscript x: derivative with respect to nuclear
displacement x.

— Superscript (x): derivatives of AO integrals only (not
expansion coefficients).

— Superscript a: o MO, orbital energy, etc. (for unrest-
ricted Hartree—Fock, UHF).

— Superscript f: f MO, orbital energy, etc. (for UHF).

— Superscript CS: closed-shell matrix.

— Superscript (2): MP2 energy or density correction.

Summation ranges

— act: active occupied MOs (usually valence orbitals).
— core: frozen-core MOs (usually inner shells).

— occ: all occupied MOs (core + act).

— vact: active virtual MOs.

— vf: frozen virtual MOs.

— vall: all virtual MOs (vact + vf).

— all: all MOs.

Symbols

— (pq|rs): electron repulsion integral (ERI) in the MO
basis, where p and ¢ refer to electron 1 and r and s
refer to electron 2.

— H,,: one-electron Hamiltonian integral.

— 8,4 overlap integral.

— ¢, self-consistent-field (SCF) orbital energy.

— U+ orbital response to nuclear displacement x.

— |p): MO in bra-ket notation.

— L: so-called MP2 Lagrangian.

2.2 Definitions

Definitions used in the derivation are summarized here.

Derivatives with respect to a perturbation x

The derivative of a MO is given by [17]

op) 20 R .
B = 1P)= (Z Cup|“>> =D Cuplu)+)_ Gyl
Iz K k
AO all all
= pY+Y D UL Cul) = [P+ UL lg)
n q q
(5)

Since an ERI in the MO basis is a linear combination
of ERIs in the AO basis

(pglrs) = CupCigCirCos(v|ic)

wie

(6)



it follows that
all all
Z (tq|rs) + Z o (D1]7S)

all all

Z (qutS+Z ~(palrt)

The derivative of the orthonormality constraint

(palrs)* = (pglrs)™

(7)

Spq= 0,4 yields
Us,+ UL +80 =0, (8)
and thus
1
x _ _ Z¢
Upp B 2Spp ©)

Coupled perturbed Hartree—Fock equations
in the spin-orbital basis

These equations are derived by taking the derivative of
the Fock matrix equation in the spin-orbital basis. (See
related closed-shell derivation in Ref. [17]). The orbital
responses may be expressed in terms of orbital energies,
overlap integrals, and other quantities by writing

Ul = —— 0, . (10)
. (Sq - Sp) H
where
vall occ
;qEB;qJFZZU:kAPqu ’ (11)
c k
Apgrs = 2(pyqlrs) — (prlgs) — (pslqr) , (12)
occ
Bx F})( ZSH qulk ) (13)
=1+ [(palk)™) — (pklgk) ] (14)
k

If p=g¢, it may be shown that Eq. (11) can be written
in the simpler form

6=0, . (15)

The coupled perturbed Hartree—Fock (CPHF) equa-
tions are then written as

occ vall
Z Z [0an0ij (61 — €a) — Aain;) Uy = =By . (16)
i a
or, in matrix form, as
A'U" =B, (17)
where
Apiny = 0apij (&1 — £a) — Aaiv. (18)
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2.3 Techniques

There are several important tools used throughout the
paper, some familiar and some less well known, that are
summarized here.

Interchange of indices owing to equivalence
on summation

For example,

> _ (ialjb) (iblja) =y _ (ialjb)(ibja)* (19)
ab ab
> [(“aljb) + (ialj*b)] = 2 _ (i*aljb) (20)
ij i
Splitting summations
For example,
SUS=D Ui+ Ui => Ui+ > Ui+ U . (21)
k ki k>i k<i
The chain rule
For example,
2
1 1 8D?b 1 X
0 0 e/ (D‘.’.b) . (22)
ax\D% ) ~ oD@ \ D% ) “ox D | \7U
Cross-multiplication
For example,
1 1 DY —DY -
Tab  pyab - pabpab . pabpyab (23)
Dy Df DDy DDy

3 Derivation of the MP2 gradient equation
in the spin-orbital basis

In this section, the frozen-orbital MP2 gradient expres-
sion is derived in the spin-orbital basis. First, the general
form of the MP2 gradient is examined. Then, the deri-
vative of the MP2 gradient expression is considered,
orbital responses are introduced, density matrices are
introduced, and the CPHF equations are solved. Sub-
sequently, the resulting one-particle density matrices are
summarized.

3.1 General form of the MP2 gradient

When written in the AO basis, the MP2 energy gradient
takes the following general form that applies to all
analytic first derivatives with respect to a nuclear dis-
placement x:
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AO AO
£ =S A+ 3 IS, + ety

wie

(24)

In Eq. (24), Py*? is the one-particle density matrix,
WMP2 is the energy weighted density matrix, and T)%” i
the two-particle density matrix (in the AO bas1s) In
practice, Eq. (24) is evaluated by forming the density
matrices in the MO basis and back-transforming these
matrices to the AO basis for contraction with AO integral
derivatives. The task ahead, then, is to apply the appro-
priate restrictions to introduce the frozen-orbital approx-
imation and derive the MO counterparts of the density
matrices in Eq. (24). The MP2 density matrices are ex-
pressed as a sum of the SCF density matrices plus the MP2
density correction matrices; therefore, more specifically,
the MP2 density correction matrices must be derived.

3.2 Derivative of the M P2 energy correction

Taking the derivative of the frozen-orbital MP2 energy
contribution (Eq. 1) with respect to nuclear displace-
ment x gives

act virt

= i3 [ty + Galln) (17)] - 29)
ij ab
The amplitude derivative is
(Tgb)x = (iall )"/ Dgf =+ (ial ) (1 /ng)” (26)

Substituting Eq. (26) into Eq. (25), and recognizing
that the first term of Eq. (26) yields a term equivalent to
the first term (in the brackets) of Eq. (25), gives

act vact

ZZ (ia||jb)'T,

ij ab
act vact

£330 Gall)iall) (1/087)’

ij ab

(27)

Applying the chain rule (Eq. 22) to the second term
of Eq. (27) yields

act vact

ZZ (ial|jb) T”b

ij ab
act vact x P
ZZ (ia||jb)(ial|jb) (D;’jb) /(D;‘;’)
ij ab

(28)

3.3 Expansion using orbital responses

The next step is to expand the derivative ERIs (ia||jb)*
in terms of orbital responses. The expression for ERI

derivatives (Eq. 7) is substituted into Eq. (28), which
introduces the unknown expansion coefficients or orbital
responses U%. (D¢#)" is replaced with specific orbital
energy derlvatlves (derwatlve of Eq. 4), leading to

act vact all

2ZZT”b[za||]b +z ~(pal|jb)

lzltll “ all all

# S U1+ D U elph) + S0 m|,p]
) o
Y (s gea). @

ij ab

Since the summation ranges of 7 and j are identical, as
are those for a and b, Eq. (29) simplifies to

act vact all
:_zzrab[mnjb 423 Uitpall
i ab
gll act vact la||]b
+22Upa(lp”]b ZZ Dab 1] i ga) :
p ij ab

(30)

The two different types of orbital responses in
Eq. (30) can be visualized in Fig. 1. Both have a sum-
mation over the full range of orbitals, Z , which will
be divided in two different ways into occupled and vir-

tual ranges according to Z Zcore et oyl
and Z;“ — Yoo oyt oy creates  six

different types of responses:

This

core

act vact
2" — ab 7y (%) x ;
E 2;%7 [la”]b) +2XK:UKi(Ka|\]b)
act vall
+ 22 Up;(kal|jb) + ZZ (cal|jb)
occ vact
+2Z Us, (ik||jb) +2Z (ic||jb)
act vact
+2Z Uz, (iC||jb) ——ZZT“”T“b AR
ij ab
(31)
core__act __vact _ Vvf
X X X
U = all U,| U,

Fig. 1. Pictorial representation of the orbital response matrix,
where all, core, act, vact, and vf are the relevant summation ranges



In this way, the orbital responses are divided into
diagonal blocks of responses (occupied—occupied and
virtual-virtual responses such as Uy, Up, U, and
U{,) and off-diagonal blocks of responses (virtual-
occupied and occupied—virtual responses such as U},
and Uj)). These responses may be visualized in Fig. 2.
They are divided this way because some of the tech-
niques used in the next section require that indices
run over the same summation ranges; for example, k
and i both run over active MOs in the third term of
Eq. (31).

3.4 Replacement of unknown responses and removal
of singularities

Both the diagonal and off-diagonal responses must be
replaced with known quantities before the expression
resembles the general form of the MP2 gradient (Eq. 24).
The unknown occupied—occupied and virtual-virtual
orbital responses in Eq. (31) will be substituted with 07,
terms using Eq. (10). The issue of potential s1ngu1ar1tles
introduced by this substitution must also be addressed.
Starting with the active—active term in Eq. (31), the
response term is split into two equal parts. In the second
of these parts, Uj; is substituted using Eq. (8):
act vact act act vact |: act

ZZZT”U" (kaljb) = ZZ N URTE (kal|jb)

ij ab ij ab

act act vact
SRR 9 SE AT
ijk ab

Next, the summations are split according to Eq. (21)
(note that this can only be done because the summation
ranges of k and i are equal in Eq. 32), as
act act
Z Ui Ty (kalljb) =y USTS (kal|jb)

k>i
act

+ > URTS (kal|jb) + USTE (ial|b).

k<i

(33)

Substituting Eq. (33) into Eq. (32) for both the U
and U}, terms yields the following active—active expres-
sion:

core act vact Vvf
core Uy,
U,, occ
X
act U,
X
U =
X
vact x U
U ; “‘ vall
X
Vf UCa

Fig. 2. Pictorial representation of the orbital response matrix,
where core, act, occ, vact,vf, and vall are the relevant summation
ranges
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act vact act act vact act
SN S rrushaln) =553 |3 i talln
ij ab k ij ab Lik>i
act act vact
# Y URThallt)| + 53 D U i)
k<i ij ab
act vact act act
- -Z > [Z U3 T3 (kal jb) + > UL T ( ka|jb)]
ij ab k>i k<i
act vact act vact
X ab a.
I Ui tallip) — 5D > ST Ghallj)
ij ab ijk ab

(34)

The two U} terms cancel. Interchanging i <> k in each
sum over k <i (second term in each set of brackets) in
Eq. (34) yields

act vact act
ZZZT"I’U" (kal|jb)
ij ab
act vact act
=3 [T thallp) + URTEY Giall)]
ij ab k>i
act vact act
I (VAT kallb) + U TGl )]
ij ab k>i
act vact

- *Z ZSkz T,j’b (kal|jb)

ijk ab

(35)

The U}; and U, terms are collected, forming

act vact act
ZZZT”mb (kal|jb)
ij ab

act vact act

-3

ij ab k>i

[Ux T (kal|jb) — U,@T,ﬁ’j”(ialljb)]

ki*ij

act vact act

IS (Ut talli) — U3 T )]

ij ab k>i
act vact

- _Z ZSkl leb ka”]b

ijk ab

(36)

The numerators of the terms multiplying the U}; and
U;, responses in Eq. (36) are equivalent and may be
combined:

act vact act

ZZZ T"bUkl (kal|jb)

ij ab

act vact act

:—ZZZUIZ ial|jb) (ka||b) (Dab Dab)

ij ab k>i
1) (kall) 5~
za a
/ / DY DP
act vact

——ZZSkl T2 (kal|jb) -

ijk ab

act vact act

-3 ) U

ij  ab k>i

(37)
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Now, substitution for U}; and U, occurs according
to Eq. (10) and the denominators are cross-multiplied
(Eq. 23), which enables cancellation of the orbital
energy terms that otherwise would result in singularities
when MOs k and i are degenerate. The first term in
Eq. (37) is then

act vact act

320>

ij ab k>1

QZ,

(e — &
Gl ot

act vact act

) D DU (38)
ij ab k>i
The second term in Eq. (37) is
act vact act
Q"k (e — &)
"ZZZ il 78) (kal 7)o
ij ab k>l D D
act vact act
- 1SS S oy &
ij ab k>i
Collecting like terms gives
act vact act
S5 S e an
ij ab
act vact act Q +QX
=353 (A% )y
ij ab k>i
act vact
I ST allb) (40)
ijk ab

Now, the substitution of O, for ¢ (Eq. 15) in Eq. (31)
and the combination of this term with the first term in
Eq. (40) produces

act vact act act vact

_ZZ Z (Q]tl + ka> lethab _ _Z ZQxlTabTab

ij ab k>i ij ab

act vact QX,"'Q’C b
:__ZZ( i k>Tl/bTb ’

ijk ab

(41)

where the sum over k has been expanded to include all
active orbitals and divided by 2. This procedure is the
reverse of that in Eq. (33). All terms in the expression
for (09 (Egs. 11, 13) except for the orbital energy term
(second term in Eq. 13) are symmetric with respect to
interchange of p and ¢, so the symmetrized expression in
Eq. (41) may be simplified later.

The vact—vact rotations are dealt with in an exactly
analogous manner. Owing to the opposite signs of the
virtual orbital energies, the cross-multiplication step
(Egs. 37, 38) results in the opposite sign to the active—
active case:

act vact vact + Qx 5 5 act vact b b
>3 (F % Y oy
ij ab c>a ij ab
1 act vact Qx +QX b
33 (B @
ij abc

Now consider the frozen-core—active term that was
separated from the active—active term in Eq. (31). Split-
ting the term into two equal parts, substituting for Uy,
using Eq. (8) in the second of these parts, and then making
the appropriate substitutions according to Eq. (10) gives

act vact core
X ab .
ij ab K
act vact core

=30 VR T Kallb) + U T (Kl )]

ij ab K

(43)

act vact core

2222%#@%

l] ab K
act vact core

ZZZ%WMW

ij ab K
act vact core

"ZZZ%WMM

ij ab K
act vact core
=3 Z 220
ab

act vact core

DN

ij ab K

act vact core

I ST (kallip)

ij ab K

2T (Kal )

T“b (Kal|jb)

(45)

It is not necessary to remove the orbital energy dif-
ference (g—¢x) that could potentially produce singula-
rities because, as Rice et al. [5] point out for the
configuration interaction case, if the core and active
MOs are chosen sensibly (usually chemical cores and
valence orbitals) K and i should never be degenerate and
singularities are always avoided. A similar procedure
may be followed for the frozen virtual-active virtual
responses, yielding

act vact vf

ZZZ%W@W

ij ab

act vact vf

=320 ) e Tacip)

ij ab

1 act vact vf Qx
322
ij ab C a

act vact vf
—»—EZ:EEIZE:S;c73szWUb

ij ab

T (iC||jb)

(46)



3.5 Identification of density matrices

At this point, the diagonal responses (terms 2, 3, and 6
in Eq. 31) and the orbital energy derivatives (term 7 in
Eq 31) have been replaced with terms involving 0, and
Spq The general form of the energy derivative (qu 24)
enables identification of density matrices. Any term that
multiples a one-electron Hamiltonian derivative integral
HIS;C) is defined as an MP2 density correction term Pp%).
Likewise, any term that multiplies an overlap integral
derivative S}jc;) is an energy-weighted density correction
term W [18].

By 1nspect10n of Eq. (41) and by recalling that the
expanded definition of Q% (Eq. 11) contains H{)
(Eqs 13, 14), the active— active MP2 density correction

Pk(l 1s defined as

act vall act
O + O\ abrav O + i\ p.
3 (B Gy = (G,
ijk  ab ki
(47)
the core—active MP2 density correction PK by inspec-
tion of Eq. (45), is defined by
act vall core Qx b act core
Ki a
2222 T3 (Kallje) =303 0P
ij ab K
(48)

Note that Eq. (47) shows that P,Elz ) —Pi(kz), ie.,
act vall rab rab act vall map ab .
ZZTUT_ZZTT.Inaddl-
tion, terms 1 and 2 of Eq. (45) clearly show that
- r
An active—active energy-weighted density correction
W(2 [7] (labeled [I] because additional energy- welghted

dens1ty correction terms labeled [/1] and [/I]] follow) is
defined by inspection of the second term in Eq. (40),

act vall act ) 02)
N s kallipy = > s w (49)
l/k ab ki
The third term in Eq. (45) defines W,
act vall core act core ) (2
I ILAIOE 2D Sk Wik
ij ab K
(50)

()

Virtual-virtual densities P, P/, W\, and WC(? may

be defined in an exactly analogous manner.

3.6 MP2 Lagrangian, CPHF equations, and Z-vector
method

If the relevant substitutions into Eq. (31) are made, the
derivative of the frozen-orbital MP2 energy at this point
is given by

239

. act QX + QX act
2 2
B () st

)

vact +Qx
+Z( = ba) ab +Z‘S‘ab ab
act core act core
+3 D (Ot Oi)Pa + D> S mi ]
i K i K
vact vf vact vf
YD (Qeut Cic) P+ Y 8.2 M)
a C a C
act vact vall
+ZZZ -(cal|jb) T“b
ij ab ¢
act vact occ act vact
AN UL (k| 1) TE 4+ ZZT“” ia||jb)*
ij ab k ij ab

(51)

The remaining unknowns are now virtual-occupied
and occupied—virtual orbital responses such as those in
the ninth and tenth terms in Eq. (51) (U} and U}). In
addition, the substitution of the diagonal responses by
0, terms (first, third, fifth, and seventh terms of Eq. 51)
introduces virtual— occupled responses through Eq. (11).
Substitution of Eq. (11) for (0 in Eq. (51) leads to

. act BV+BI act 2
B =3 (B )R S s

f

vact BZ +Ba
+Z< b2 b) ab +2Sab ab [1]

ab

act core @ act core )
DD (Bt Bi) P+ Y S Wil

i K i K

vact vf

vact vf
2 X 2
Y (Bt Bi) Pl + Y Sl
a C a C
act vall occ vact vall occ

+ Z Z Z kAl/CkPU + Z Z Z kAabckPab
act core vall occ
+23 230D Ubdualy)
i J c
vact vf wvall oIZc

+ ZZZZ Z kAchkPaB

act vact vall

P MIL~

ij ab ¢

(cal|jb) T“b

act vact occ

+ZZZU,§; ik| o) T2

ij ab
act vact

+5 ZZT”I’ la||]b

ij ab

(52)

where the symmetry property
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vall occ vall occ

Z Z Z UckApgek = Z Z Z UzkAgpek
rqa ¢k pq ¢k

has been used to simplify the form of the response terms
that came from Q.

Before carrying out the CPHF procedure on Eq. (52),
Eq. (8) must be applied to the 14th term in order
to switch the response indices. This introduces an
occupied—virtual energy-weighted density term:

(53)

act vact occ act vact occ

SN Uikl Ljb) T“”——ZZZU;k ik||jb) T,

ij ab k ij ab
act vact occ

—ZZZS (ik||jb) T .

ij ab
(54)

The core and active summations in terms 9 and 11 of
Eq. (52) may be combined into an occupied summation,
and a similar procedure may be used on terms 10 and
12. Next, Eq. (54) is substituted into Eq. (52) and
virtual-occupied response terms are grouped as

act (B‘c _|_B‘c

act
B2 S ()R s
i
vact
B, +B;,
+Z(b’)w+2%au1

act core @ act core ) 1o (2)
+2 D (Bt Bi)PG + DD Sl
i K i K
vact occ vact vf
+22Sak +ZZ BY, + Bic)PY
vact vf vall occ
+ZZS11C aC +ZZU§1¢
oce vall
l:ZPU )A[jck + Zptgl%)Aabck
ij ab
act vact act vact
— N, Z Z T (ikl|jb) + Ne > Y T,;.b(ca|jb)}
j b
act vact ! ’
ZZ (ial )V T2, (55)
2 ij ab

N, = 1, for k = active
¥=1Y0, fork=core

for ¢ = vact
for ¢ = vf

The terms in the brackets in Eq. (55) may be defined
as the MP2 Lagrangian. After changing indices, the
off-diagonal term has the form

Z U;C,'Lai ) (56)
where
occ 5 vall 5
Lai = + Zpl(k )Aaijk + ZP;SC)Aaibc
ko be
act vact act vact
- N, ZZTJ‘Z’ ij||bk) —l—NZZTbC ab||jc)
(57)
The virtual-occupied responses U, must be

determined using the CPHF equations (Eq. 16). So
far, only the derivative with respect to x has been shown,
but there are derivatives with respect to x, y, and z for
each atom. The number of unknown response vectors
may be reduced from 3N, where N is the number of
atoms, to 1 by using the Z-vector method of Handy and
Schaefer [19] as follows:

> UiLa =LTU* (58)
AU =B (59)
U' = (A)'B (60)
LU = LT(A) 'B (61)
=7'B" , (62)
where

Z'=L"(A)" (63)

Thus, the following set of simultaneous equations
must be solved for Z:

(AY'Z =L. (64)

The elements of Z are obtained from solution of
linear Eq. (64) and the contribution from Eq. (58) is
evaluated according to Eq. (62) as

ZUX ai *ZijZai .

Since B contains core Hamiltonian derivatives
(Egs. 13, 14), the elements of Z may be used to define
the virtual-occupied block of the density matrix:

ZBZI‘ZW - ZB(JI ai

From Egs. (16), (64), and (66), the following CPHF
equations are solved to find the virtual-occupied blocks
of the density matrix:

(65)

(66)
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At this point, the gradient expression (Eq. 55) may be
written more simply as

. oce BX +B
2= 3 () + D s
vall
B, +B
4 Z( ab ba)

Ly (67)

vall

ab + Z Sab

ab
vall occ vact occ
PN BT 3D S
act vact
222 (ia)|jb)™ (68)
ij ab

where the active—active and active—core contributions
have been combined into an occupied—occupied con-
tribution and the vact-vact and vact—vf contributions
have been combined into a virtual-virtual contribution.

3.7 Additional energy-weighted density terms

In Eq. (68), the MP2 dens1ty correction terms P( ) are
multiplied by B, , which gives rise to additional energy-
welghted den51ty terms which are labeled [/1] and [/I]]
(listed in Sect. 3.8)). Making the appropriate substitu-
tions for B), according to Eq. (13) (and recognizing that
the first andq third terms in Eq. 13 are symmetric to p and
q interchange), the MP2 frozen-orbital gradient expres-
sion may now be written as

x g+ e occ
g ( /) Z Sk, ”4
ocC
a, "i QZSU azlk]

oce

=25

occ vall

£ R
i a

vall ) ) &+ €

+ ZP F;JI: ab ( = ) Z‘Skl ablk
occ vall
AU I

vact occ act vact

+ZZSL<;) ZZlaH]b

ij ab
(69)

Factors multiplying S&¥)terms are deﬁned as W21
and W )] matrices (see Sect. 3.8). The qu terms may
now be substituted according to Eq. (14) At this point,
the MP2 frozen-orbital gradient expression is
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- occ
E@)’—ZPS){
)

occ vall

occ

; +Z[z]|kk — (ik| &) }}
+ZZP§?’{ 0 +Z[az|kk — (ak|ik)® }}

vall occ

+y Py {H§Z>+Z [(ab|kk)<"> —(ak|bk)(">} }
ab
occ vact occ

+ZS};‘> f +2Sab +ZZ
ij

occ
*ZSU W
Za":i () 1(2)
+ S W,

occ act vact

+ZSU w3 )+ ZZ ia||jb)*

ij ab

The ERI derivatives in terms 1, 2, 3, and 11 in
Eq. (70) will contribute to the two-electron density
matrix. Since a wavefunction type should be defined
before dealing further with these terms, the one-particle
gradient terms in the spin-orbital basis will be briefly
summarized before moving to specifics for UHF and
restricted Hartree—Fock wavefunctions.

II +ZSab ab [[]]

T".b. (70)

3.8 Summary of the one-particle gradient

The one-particle density matrix terms for the MP2 gra-
dient in the spin-orbital basis are summarized here.

M P2 density correction terms

KJ = core — core

P =0 (71)
Ki = core — act
(2) ( act vact
P = PR =5 ZZW (Kal|jb) (72)
J
ij = act — act
act vact
= ——Z 2T (73)
ab = vact — vact
act vact
T4 bc
=33 74
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Ca = vf — vact

(2) (2) act vact
PCa :PaC = F — & ZZTﬂb ZC”]b (75)
ai = vall — occ
P =z, (76)
MP2 energy-weighted density correction terms
[1] terms:
ij = act — occ
(2 act vact
Wl = =55 S T Gl )
ab = vact — vall
act vact
W ] DTl (78)
ai = vact — occ
(2) act vact
Pl = =3 T bk (79)
Jjk
[Z1] terms:
ij = act — occ
2 |G
W) = =3P (et 1)) (80)
ab = vact — vall
1
Wi T} = =5 Py (s + &) 81)
ai = vall — occ
W = Py (82)
[Z11] terms:
ij = occ — occ
all
W) = ZP i (83)

4 Derivation of the MP2 gradient equation
in the unrestricted basis

In this section, the results from the spin-orbital
basis derivation in Sect. 3 are specialized to the
unrestricted basis. The one-particle density matrices,
Lagrangian, CPHF equations, and two-particle density
matrices in the unrestricted basis are considered. Finally,
the one- and two- particle gradients are summarized.

4.1 One-particle density matrices

The UMP2 gradient equations are derived straightfor-
wardly from the spin-orbital results. The subspace of
spin orbitals must be divided into two subspaces: one
with o spatial orbitals and « spin and one with f spatial
orbitals and f spin:

subspace subspace” subspace”
> =X X (84)
p r ok

The active—active density matrix P(

into four parts:

may be divided

PP =P8+ PO+ PP+ P

(85)

The “mixed” densities P(‘ . and P,f - are zero, so this
leaves an («a) density and a (ﬁﬁ) den51ty These will be
the same if o and f are exchanged, so the (o) density
will be considered in more detail. Dividing the subspaces
yields

act vact act” act?
P = ZT‘”’T’”’ — (Z +Z>

o k/;
vact” vact/ vact” vact
ab rrab
x Z+Z D+ |THT
1 bl b/f

ﬁtbl dbS( S(bd )(bﬁ
E E E T‘;kx T(ikat + E E E T?k/r j‘ik/f

act” vact* vact* act’ vact” vact”
yad a* kﬁ a*

act” vact? vact” , ; act” vact” vact/‘ ; ,
b* ral b* a*b? ra”b
DSOS ey 23S S et e
ko gb b k* a* pB
act? vactf vact* , ; act? vact* vact? ; ;
b* T4 b* a*b’ ra”b
DD D T Td +D_ D ) Tai T
i Ljpp
ok P Ay
act” vact” vact/ act? vact” vact/

Bpb Bpb Bpb BpB
+§ § E T2k T‘;k,+§ E E T T

i ab bb B af BB
(86)

Terms 2, 3, 4, and 8 in Eq. (86) contain an odd
number of f spins, so the spin functions will integrate to
zero. The spin functions in term 7 in Eq. (86) also
integrate to zero. This leaves three terms. Substitution of
the form of the amplitude (Eq. 2) gives

act” vact” vact” 1/ .u o050 0L 1O | IO 0L
@ _ 1 ZZZ[(W |k*b”) — (ib*|k*a™)]
])l‘xjat —_ 2{ Daabz
lik&
L) - (e
DI
act? vactf vact’

B3I

()] [ (e

7T T D Dis
act? vact” vact? [(ifxa kﬁbﬁ)] [(]aaa k/}b/i)]

15 %) 9 il ALLEUERLLEN S
kb a* b i24ch kb



The last two terms are the same if indices ¢ and b are
interchanged. The first term may also be simplified by
expanding the equation and interchanging indices a and
b in appropriate terms, yielding

ZZ P eb) - (b)) (k)

L Dab Dy
act? vact® vact” [(o: “{kﬁbﬂ)] [( o z|kﬂb[3’)] ( )
_ 88

The () density matrices will not be considered in
detail since they may be determined simply by inter-
changing o and f in the appropriate («x) density matrix.
For example, the corresponding active—active (ff) den-
sity matrix becomes

act/ vactvact/ [(iﬁaﬁ|kﬁbﬁ) — ('/fbﬁ|klfaﬁ)] (jﬁaﬁ}kﬁb/f)

]31(,53; = _Z Z Z Da/’b/’

Da/f bP

W af b ik JPkP
act” vact? vdct’ /} Pl bo( iBab b
—ZZZ |/; [(J ‘ )] . (89)
DA b* Daﬂb“
k* b b l/ikaz jﬁk“

The last of the one-particle density matrices that de-
serves mention is the third term in the energy-weighted
density matrix. The (xo) term is transformed as

all

2 = ZP Apg i

11* all?

Z Z pﬂqﬁ p/fq/fj%im (90)
)

p"q"
where 1t is again recognized that the mixed densities P,
and P/f ., are zero. Four types of the A4,,, must be

]7 g

con31dered

Apgrrs =20 |r"s™) = (p*r*|q"s™) = (P*s%1g*r") . (91)

Apgorigs = 2(p"q"|'s") (92)

Appgprrss = 2(pﬁqﬁ|r“s°‘) , (93)

Ay = 2(p"¢"|r's") = (P'rP1g"s") = (s |g"")
(94)

Substitution of Egs. (91) and (93) into Eq. (90) yields

all”

W [[[ Z |:2(paqo(|ja(l-fx) _ (pajxlqala)
pP'q*
all?
S TR SN SIR
rrqb

(95)

Owing to equivalent summations over p and ¢, the
matrix contribution may be written as
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III i

au/* @
P/Jq/f(p qﬁ|iaja) .
phab

AW 17T = 0]

4.2 Lagrangian

The virtual-occupied response term must be considered
next. This term (Eq. 56) has both (ax) and (Sff) con-
tributions:

occ vall occ” vall* occ? vall?
§ : E : x _2 : 2 : x 2 : § : x
UaiLal a*i* a“z“"‘ Uaﬁil‘Laﬂilt .
i a [ B

©7)

The next task is to find the form of the («x) La-
grangian. The first and second terms in the Lagrangian
in the spin-orbital basis (Eq. 57) transform as in
Eq. (90). The third and fourth terms may be transformed
with the techniques used for the other density matrices.
This yields the following form for the (xo) Lagrangian:

occ* occ?
Lypjn= § PakiAa“l“ﬂk“+ § ]/fkﬁ a’l"_j/‘k/f
ke 7
vall” vall®
+ E bacx a*irbrer § b/lclf a*i*bbch
b*c* bbb

St et riee

— 2N (7 |b"k™)

'xku b D;J:]f:

act” act? vactﬁ O( a* kﬁb )
a3 e

Jk bk "k/‘

act” VdCtX R A A B A R
+2M“ZZ i*b |] c )bxc(; ¢ ‘] b )(acxbotuacoc)

7 b Dije

act? v&ct’vacﬂ3 b | jbe )
+2MZZZ o (a*b?|jPcP) . (98)

b o b

Again, the (fff) Lagrangian will be related to the (o)
Lagrangian by an interchange of all & and f spin terms.

4.3 CPHF equations

Equation (67)may beexpressed in the unrestricted basis as

vall* occ*

Yy { Aginpge & OOy (gg _ g;f) }pgfjx
b
vall® occ’ 5
+ Z Z {Aaxiabﬁjﬁ + 5axb/i51'xj/f ( — 8/;) }Péﬁj)/j Lail’a,
b
(99)
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vall* occ” 5
ZZ {Aaﬂ B+ 5aﬂb151ﬁj ( ) }PIS“ )X
vall/ occ’ 5
+ Z Z {Aaﬁ,ﬁbﬂ 8+ Ogbph Oz ( ) } ;ﬁj)/; —Lgsis -
b b
(100)

The Kronecker ds of mixed spins are zero, leading to

vall* occ”

Z Z {Aa"ﬂb‘ o+ 5ab511( ) } 3])1
vall? occf @
+Z Z {Aa"i“bﬁjﬁ }Pb/}_/ﬂ — _La“i“ 5 (101)
bbb
vall’ occf 5
Z Z {Aaﬁ if bbb + 5ab5U( ) } ;ﬁj)ﬁ
7
vall* occ”
=+ Z Z {Aa/‘zﬁb“j }P Y = a/;l/f . (102)

Equations (101) and (102) may be solved for P ‘i and
b,? ;. The contribution to the gradient expression comes
from the following equations:

Z ai* Ly = ZBa“t" a*i*y (103)
a*i* a*i*
Z Ugli,'/fLaﬂiﬂ = ZBX/J,/JP Bib* (104)
abif abif

The form of the Bj, . term may be determined in the
following manner:

1 occ”

X (x) )
By = Fyig = Syt =3 S bt
kx>
1 OCCﬁ
Z SirApsguio (105)
kﬂ]ﬂ
_F(x) _S(X) & — locc S [ (px oc|kocla) (pocka| ocloc)
A Y ) k1 q q
kx>
occ/‘
~ (P"lgK) ——ZSW "¢ |[K1P)] . (106)
kPIP

Owing to equivalent summation over k and /,
Eq. (106) may be simplified to

occ

By = Fy =Sy = Y _SELI"q W) = (0"l 1)

prq rq
k1
occh
Z P p q ’kﬁlﬁ) (107)
kPIP

where

occ”*

va(xq)x H’E L+ Z [(paqa|k1ka) (paka|qo¢k1)(x):|
occﬁ
+Z[ g ki) ] . (108)

4.4 Two-particle density matrices

The nonseparable density term in the spin-orbital basis
(term 11 in Eq. 70) is

act vact
—Z > (ialljb) ¥ T (109)
ij ab
Summing over spin gives
l it’vact“ [(i“aﬂjaba) _ (l-xboc|jc<aoc>]
2 7 aibt & +& e — g
o [<l.aaa| I ba)“) _ (l.a b jaaa) W}
act” act? vact* vact? (l-ocaat |J/3bﬁ) (l'atax |Jﬁb/5) (x)
+
;;;; e —a—gf
act” act? vact/ vact” (iocbot |j/5aﬁ) (ictbot |j/5aﬁ) (x)
533 3p gl ca (LA
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x| (a|767) — (P |Fal) "] } : (110)

Terms 2, 3, 4, and 5 in Eq. (110) are the same if
indices (i,j) or (a,b) are interchanged. Terms 1 and 6
may also be simplified by expanding the terms and
interchanging appropriate indices. This yields

azctivact" [(iaaauxbx) . (i“b“|j“a“)}

%y g% gl (l'fxa“U(xb“)(x)
e e —et—ef
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%% 8?+Sf—85—££ (|8
(111)

At this point, AO ERI derivatives may be substituted
for the MO ERI derivatives using Eq. (6), which gives
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The quantity in large parentheses in Eq. (112) may be
identified as the nonseparable two-particle density
matrix I'N> | which gives a term of the form

wie?

ZFWG wlia)*

wie

(113)

Finally, the separable two-particle density comes
from terms 1, 2, and 3 in Eq. (70), which have the form

all occ
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Summation over spin yields
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> Pry { > [(g k) kg k)
v occﬁ
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Py
Expressing Eq. (115) in terms of AO derivatives
(Eq. 6) gives
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Factoring Eq. (116) yields
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Identification of appropriate SCF density matrices
such as

occ”*

aSCF __
Ps §

and transformed MP2 correction density matrices such as

(118)

all”

ZC“ Cf,‘q pq (119)
allows Eq. (117) to be written as
Z[ o (00r) YPISCE P )(ozoc)P“?‘(,SCF—l—Ple)(ococ)PffCF
wvic
+PD (BB)PIT — PG (BB)PIET 1P (BB P
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The quantity in brackets in Eq. (120) can be 1dent1-
fied as the separable two-particle density matrix I'S
yielding a term of the form

Zry\)a ,LLVMO'

uvio

uvie>

(121)

4.5 One-particle gradient summary

The (o) terms of the one-particle density matrices are
summarized here. All () one-particle gradient terms
are direct analogs of the corresponding (cot) terms.

MP?2 density correction terms (ou)

KJ = core — core

. 2 2
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MP2 energy-weighted density correction terms (o)
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[11] terms:
1
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4.6 Two-particle gradient summary

The two-electron density can be expressed as a sum of
the nonseparable two-particle density and the separable
two-particle density:

F(2> —TNs
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(135)

Nonseparable density:
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5 Derivation of the closed-shell MP2 gradient equation

If only the closed-shell gradient equations are desired,
the gradient expression may be derived directly from the
closed-shell MP2 equation [14, 15, 20]. However, when
the unrestricted gradient expression has already been
derived, the simplest pedagogical derivation for the
closed-shell expression comes from simplifying the un-
restricted expression, as shown in this section. Several
formulations have been presented to improve the



computational efficiency of the closed-shell frozen-orbi-
tal MP2 gradient algorithm [14, 20], and we note that the
derived expression presented here is not the most effi-
cient to date; however, the approach presented is more
than adequate for the purpose of demonstration of
dependent-pair and gradient theory techniques.

For the closed-shell system, all o« and f§ spatial orbitals
are equal and all  and f orbital energies are equal. Thus,

") = 1) (138)
and
a=i . (139)

5.1 One-particle density matrices

The one-particle density matrices may be derived from
their unrestricted counterparts. The closed-shell density
correction matrix F; )is the sum of the ao and BB
unrestricted density matrices (from Eq. 85). So, the form
of the density matrices in the closed-shell basis can be
determined by setting o= f in the unrestricted matrix

equations. Thus,

PESO)— p2) 4 pl2) _5pl2) (140)
and
WSO = wl w wd, = 2w (141)

The active—active density matrix can be evaluated
using o= f3:
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The second term on the right-hand side of Eq. (142)
may be combined with the first part of the first term.
Since a closed-shell system contains only one type of
spatial orbital and orbital energy, the o designation on
MOs and orbital energies will be dropped. This notation
should not be confused with the spin-orbital notation
(which looks the same). With these simplifications, the
matrix may now be written as

9( x‘ka(/] (]xa1|kaba)]
Dab DL

(142)

(iblka)] (ja|kb)
DY

act vact vact .
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(143)
A closed-shell amplitude may be defined as

[2(ialkb) — (ib|ka)]
Dy

Ty = (144
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Thus, the active—active density matrix contribution
may be written as

act vact vact

kb)
PP =233 3 U

Next, the simplification of the 4 terms must be con-
sidered. With o= f5, Eqs. (91, 92, 93, 94) become

(145)

Apgrse = 2(pglrs) — (prlgs) — (pslqr) (146)
Ap’qfrﬁsﬁ = 2(pq|rs) ) (147)
Ap[s’q/fracsz = 2(pq|rs) y (148)
Ay = 2palrs) — (prlgs) — (pslar) - (149)
Now, the closed-shell energy-weighted matrix
contribution, ;" [lll], may be written as
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all”
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all
(153)
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These techniques may be used to simplify the other
closed-shell one-particle density matrix and one-particle
energy-weighted density matrix blocks, which are sum-
marized in Sect. 5.5.

5.2 Lagrangian

The closed-shell Lagrangian is

LS® =212, (154)
occ” ) occ” )
=2 P [2(ail jk) — (ajlik) — (aklif)]+2) Py [2(ail jk)]
jzka( jzk«
vall*
+2) P2 2(ailbe) —(ablic) — (ac|ib)]
b*c*
vall* act vact
+2 "By [2(ailbe)| 4N, ZZ (alkb) = ]b|ka)](ij|bk)
b*c*
act vact

\kb

(ij|bk)

—4N, ZZ
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act vacl

+4N; ZZ

act vacl

4N, zz lje) ,

U

[(ib|jc) —(ic|jb)]

DE (@bl

(155)

occ”
= 2" PCL[4(ailjk) — (ajlik) —

jikat

(ak|if)]

vall”®
+ 22 P(i)d [4(ailbc) — (ablic) —

b*c*

(aclib)]

act vact

[2(jalkb) — (jblka)]
o 4N Z Z Da]ﬁ)
J

act VdC[

+4NZZ

occ
= Z P
vall
+ Z pSSe

act vact

XOHY

act Vact

—|—4NZZ

Now, if the closed-shell 4 term is defined as
A5, = 4(pglrs) — (prigs) — (pslar),

then the closed-shell Lagrangian can be written more
simply as

(ij|bk)

2(ib|jc)
Dbc

— (icljb)]

(abljc) (156)

[4(ailjk) — (ajlik) — (aklif)]

[4(ailbc) — (ablic) —

(aclib)]

2(jalkb) —

= G

2(ib|jc)
Dbc

— (icljb)]

(abljc) . (157)

(158)

vall

CS(2
ZP et DR AL
act vact act vact
— 4N, ZZT}[;& ij|bk) +4NZZT“ abljc) .
J
(159)
5.3 CPHF equations
For closed-shell systems, Eq. (101) becomes
vall” occ*
— Lo =y {2[(ailbj) — (ablij) — (ajlbi)]
b
5 vall* occ” 5
+ 0udy (e — &) Pan + > [2(ailbj) P,
b
(160)

vall” occ”

=>_> {4l(ailb))-
L

(ablif) = (ajlbi)]+dasd (e

&) } Py
(161)

Since the off-diagonal closed-shell density is

CS(
Py

@ =2p0, (162)
substitution of the closed-shell 4 term (Eq. 158), density
matrix (Eq. 162), and Lagrangian (Eq. 157) in Eq. (161)

yields

vall occ
IS5 = ZZ 458, + dudiy(en — ) | PP (163)
Equation (163) represents the linear equations

that must be solved to find the virtual-occupied block
of the density. The contribution to the gradient
equation is

ZBXCS

The closed-shell equations for B;((ch

(164)

) may be written

occ”

ZSk"l“ (px x‘kxloc)

k1

— W) g

(CS) _ p(»)
Bx F 7( p%ql

g p*q

occ”

—(p"K"|q" 1)) — Zsli);;y(paqﬂkala) ’ (165)
k1
x(CS) _ x) _ o)
qu - Fp(q Spq &g
occ < )
= > 8 2(palkl) — (pKlq1)] (166)
Kl
where
Fp(:;X _ Hp(fc)ﬂ + Z [(paqa|kak1)(x) _ (pockoz|qo<ka)(x)]
k%
+> ()Y (167)
kfl
HO +3 [2(pq|kk (pk\qk)“)} . (168)
k

5.4 Two-particle density matrices

Next, the closed-shell versions of the nonseparable two-
particle density and the separable two-particle density
must be derived from the unrestricted versions. If o= f is
substituted in the nonseparable density,



act vact

ZZ la\ﬂ?)*(lbbaﬂuwc C3iCob
&+ & — & — &p

m/lo‘
ij ab
act vact .
(ia|jb)

2 Cu'CvaC ‘Cﬂ
+ Z;&"’_S]_Sa } Aj“ab

act vacl .

(ia|jb) — (ib|ja

3y W) = @il o e c, (169)

T R A Tk

Since the first and third terms are the same and the
second term is equal to the first part of the first term,
Eq. (169) can be simplified to

wic — e £1+3/—Sa—8b \//ll va“lj“ab -

Substitution of the form of the closed-shell amplitude
(Eq. 144) yields

act vact

T =22 T CuCuuCisCon

ij ab

(171)

which corresponds to a back-transformation of the
closed-shell MP2 amplitudes.

If o= f is substituted in the separable density, this
term becomes

2
3,0 = P2 (o) PSY — P () ST - PO () PSCT
+ P2 () PSCF — PO () PSCY 4 P2) (1) PZSCT
(172)
I3, = 4PP (00) PSCF — 2P (o) PISCT (173)

Now, since Po® = 2P (aer) and PSCF = 2p#SCF,
Eq. (173) becomes

1
CS(2) pSCF _ 1 5CS(2) pSCF
wie va P/ﬁo‘ 2P P\f(r

rs (174)

5.5 One-particle gradient summary

The one-particle density matrices for the closed-shell
basis are summarized here.

MP2 density correction terms

KJ = core — core

(175)
PSP =0
Ki = core — act
(176)
CS( ) CS(2) 2 act vact
P @ =PFPg T = ZZTab (Kaljb)

i —eg) S
K) 5
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ij = act — act

act vact
- —22 Z TS (jalkb) /D‘”’ (177)
ab = vact — vact
act vact
- 22 S 1e(iblje) /Df?; (178)
Ca=vf—vact
act vact 179
PES@)_ ;ZCSQL ZZTab iCljb) (179)
ai = vall — occ (180)
P55(2> = 7C8
M P2 energy-weighted density correction terms
[Z] terms:
act vact
ij=act—oce W (1) =-23"" 18 (jalkp) (181)
k ab
ab = vact — vall W‘gs(z) 7]
act vact
= —22 Z T (ib jc) (182)
act vact
ai = vact —occ  W,; —42 Z T]‘}f’ ij|bk)
(183)
[Z1] terms:
. cs(2 1 cse
ij = act —occ W <)[I]:_§Pij Dl te)  (184)
1
ab = vact —vall w1 = — EPGC,,S(”(SQ +&) (185)
ai = vall — occ Wm 8@ )[II] Pacis(z)si (186)
[Z11] terms:
all
ij=occ—occ W, l-j III ZPCS 2(pqlij) — (pilgj)]
(187)

5.6 Two-particle gradient summary

The two-electron density can be expressed as a sum of
the nonseparable two-particle density and the separable
two-particle density:

F;(u>/1<r Fm)a + Fuv)o‘ ( 188)
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Nonseparable density:

act vact
F,Tvaa = 22 Z Y}?bcuicvacijcab (189)
ij ab
Separable density:
1
F,uw'[a_P;%S< )P)SEF_EPM 3¢ )P\rs(rCF . (190)

6 Implementation considerations

A brief summary of the significant computational steps
is presented. Some of the important implementation
aspects are considered in more detail, including the
back-transformation, symmetrization, and contraction
of the one- and two-particle density matrices.

6.1 Computational procedure

An outline of the computational procedure used to
calculate MP2 gradients is presented here.

1. Follow the SCF procedure to obtain orbital en-
ergies, coefficients, and the PSCF, WSCFand 5¢F
matrices.

2. Transform ERIs from the AO to the MO basis (see
Sect. 7.1).

3. Determine contributions to the P®, W®, and L
matrices according to the relevant equations
(Sects. 4.2, 4.5, 5.2, 5.5).

4. Calculate the MP2 energy.

5. Form the last two terms in the Lagrangian in the
AO basis (Sect. 7.3).

6. Iteratively solve the CPHF equations in the AO
basis to determine P, (Sects. 4.3, 5.3).

7. Calculate the contribution to W from the WI[II]
terms (Sects. 4.5, 5.5).

8. Form WI[III] in the AO basis (Sect. 7.3) and trans-
form to the MO basis.

9. Calculate the nonseparable contribution to I'. (Sects.
4.6 and 5.6)

10. Back-transform the completed P® and W® ma-
trices to the AO basis and add to the SCF density
matrices to yield PMP? and WMP? (Sects. 6.2, 6.3).

11. Contract the PMP? and WMP? matrices with appro-
priate one-electron Hamiltonian and overlap deri-

vative integrals.
X

12. Complete I' and contract with appropriate (uv|io)
integrals.

6.2 Back-transformation and symmetrization of density
matrices

The total one-particle energy gradient is obtained by first
back-transforming the complete MP2 density correction

Pzgq and energy-weighted density correction W ) to the
AO basis. Note that only the virtual— occupled contrlbu-
tions to qu (Eq. 127 or Eq. 180) and W (Egs. 130,133
or Eqgs. 183, 186) appear from this derivation. The cor-
responding occupled—wrtudl blocks are zero. Thus, sym-
metrization of P?) and W is customary prior to the
back-transformation. P(?) ‘hust be symmetrized before
Eq. (134) or Eq. (187) can be applied.

For the closed-shell case, the back-transformation is
done as follows:

all

Zc CoyPS

all

2 CS(2
P =S,
pq

For the unrestricted open-shell case, the back-trans-
formation is

(191)

(192)

all”
o oc )
uv Z Cupc‘q ra (193)
all*
ZC“ Cf,‘q . (194)

with corresponding equations for the () matrices.

The nonseparable and separable density matrix
corrections are already in the AO basis (Egs. 136, 137
or Egs. 189, 190). They must be symmetrized according
to the particular ERI permutational symmetries used
in a given algorithm.

6.3 Contraction of M P2 density matrices
The second-order corrections must be added to the

corresponding SCF densities. For the closed-shell case,
these equations are

le’2 PSCF +R‘ﬁs() , (195)
Wt = 2wt SR (196)
where
occ
PE‘CF - 22 Cukcvk P (197)
k
oce
WocF = Z CuCurér - (198)

For the unrestricted open-shell case, these equations
are

P2 = pCF 4 pISCE 1 POV (o) + POV (BB) . (199)
WMP2 W(/SCF + VVluﬂVSCF + W( )(OC(X) + VV#V (ﬁﬂ)
(200)



where
occ*
PSF=N"crcr (201)
ki(
occ”
W =N " Cher (202)
kﬁ(

with corresponding equations for the f SCF matrices.
The final MP2 densities P)/*> and W)\!** are contracted
with the one-electron Hamiltonian derivatives H,Ef) and
overlap derivatives S,(;ﬁ), respectively.

The total frozen-core two-particle density matrix is
evaluated by adding the two-particle density correction

to the SCF two-particle density,

2
Fmgg = F,Ew)/lo’ + FESA]; ’ (203)
where
1 1
SCF SCF pSCF SCF pSCF
Fuv/la = EP[M‘ P/la - ZP,u). Pva (204)

for the closed-shell case, and

1
SCF __ oSCF paSCF «SCF paSCF «SCF pBSCF
FHMJ - E (Pyv P).J - P;M PVG' + Pyv P)VJ

| pPSCE Pf:CF B Pf/lsCF PPSCF | ppSCF PfECF) (205)

v vo v

for the unrestricted case. Fm% is then contracted with

the two-electron AO derivatives.
This finishes all the terms necessary for the evaluation
of the closed-shell frozen-orbital MP2 gradient (Eq. 24).

7 Reduction in computational effort

Having identified the summation ranges, the computa-
tional effort required for the frozen-orbital MP2
gradient computation compared to that required in the
full MP2 gradient computation may be examined.

7.1 Time savings in the two-electron transformation

Inspection of the last two terms in the closed-shell MP2
Lagrangian (Eq. 159), the diagonal blocks of the MP2
density correction (Egs. 176, 177, 178, 179), and all
the MP2 energy-weighted density correction [/] terms
(Egs. 181, 182, 183) reveals that their formation requires
a subset of the transformed integrals required for the
corresponding full MP2 terms,

(uv|Ao) — (jplgr) full MP2: j=occ, p=vall, g=all, r=all

frozen —core MP2: j=act, p=vact,g=all, r=all.

The transformations may be carried out by first
performing a one-index transformation producing
integrals of the type (jv|Ag), with the remaining indices
transformed stepwise to produce the full set [21].

If Ao is treated as a combined index, the memory
required to hold all (jv| o) integrals is N*(N + 1)n/2, where
N is the number of basis functions, and # is the number of
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active orbitals (for full MP2, n is all occupied orbitals).
The reduction in memory requirements on going from full
MP?2 to frozen-core MP2, then, is N> (N + 1)C/2, where C
is the number of frozen cores. Usually, even with such a
reduction, an inadequate amount of memory is available
and the transformation is carried out in batches. So, more
important than the memory reduction is the time saving
that accrues as a consequence of the reduction in the
number of batches of integrals that one needs to transform
for frozen-core MP2 relative to full MP2.

The available memory determines the number of
active orbitals j transformed in each batch. The mini-
mum memory requirement is then N*(N+1)/2 for one
orbital to be transformed per batch (this is the same for
the full and frozen-core cases). This requires n batches
for the full transformation. Clearly, then, by reducing n
from all occupied orbitals in the full MP2 to only active
occupied orbitals in the frozen-core MP2, the number
of batches required is reduced (by C in the minimum
memory case). This can result in substantial time
savings. A similar analysis of the time savings may be
done for the unrestricted case.

7.2 Time savings in the two-particle gradient

The nonseparable term of the two-particle gradient
(Eq. 136 or Eq. 189) corresponds to a back-transfor-
mation of the MP2 amplitudes. As in the two-electron
transformation described earlier, this back-transforma-
tion usually requires a batched scheme. As the occupied
summation in Eq. (136) or Eq. (189) only goes over
active occupied orbitals, the frozen-core scheme again
results in fewer batches and therefore substantial time
savings.

7.3 Terms that must be determined in the AO basis

Inspection of the closed-shell CPHF equations
(Eq. 163), the first two terms in the MP2 Lagrangian
(Eq. 159), and the energy-weighted density [/I]] correc-
tion term (Eq. 187) reveals that MO integrals of the type

(jplgr), where j = occ, p = all, g = all, r = all,

are required in the frozen-core MP2 as well as the full
MP2. If one wishes to take advantage of the savings in
computational effort discussed previously, these terms
must be evaluated in the AO basis.

Both Frisch et al. [2] and Dupuis et al. [22] have
described the formation of the first two terms of the
closed-shell MP2 Lagrangian (Eq. 159) in the AO basis.
The first two terms {1,2} of Eq. (159) are formed in
either a direct or conventional fashion by constructing
a Fock-like matrix,

AO
L= ZD;.G{-?(MVI/"LG) = (uipa)} (206)

where
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oce vall

D), = —Z C;__/C,,—kP Z C/lbcacpbc
ik

Frisch et al. [2] also described how to solve the CPHF
equations in the AO basis. Equation (163) is rewritten as

(207)

vall occ

Z ZAalbj bj - Si)PtSS( )=

and the first term is evaluated with a trial Plff)
forming a Fock-like matrix. The resulting P[E? is used as
the next trial Plsz.), and the process is repeated until the
matrices are self-consistent. Once the solution is ob-
tained and PIS;) is completed, the energy-weighted den-
sity [/I]] term (Eq. 187) may be formed in the AO basis,
again by formation of a Fock-like matrix.

For the unrestricted case, the (ao) and (ff) MP2
Lagrangian contributions (see Eq. 98) may be formed in
the AO basis. This is done similarly to the closed-shell
case by forming the Fock-like matrices

LCS

ai

(208)

again by

AO
)= Dig(0){2(uv]ia) = (ndlve) - (uolvi)}

A

Ly (o
AO
+ > Dia(BB){2(wrlio)} (209)

Ly (BB) ZDM BB{2(wvl20) — (uilve) — (nalvi)}

AO
+ Y Dig(an){2(wv] o)} (210)
Vi
where
occ* vall”
Do) = =Y CLCALPE. =S CLCLPY, (211)
xkx de%
occh vall?
D;q(BB) = Zcfjcfk bieh Zcfb oc b/fc/l : (212)
7 bhch

The unrestricted CPHF equations may be solved
similarly to the closed-shell case described previously.
However, Eqgs, (101) and (102) each contain contribu-
tions from P’ and P, so the equations must be

J
solved simultaneously un{ll self-consistency is achieved.

8 Timings

The C,, isomer of the molecule silicocene (Fig. 3) was
chosen as a test case to demonstrate the reduction in
computational effort due to the frozen-core approx-
imation. Silicocene is a group 14 analog of ferrocene,
and its molecular and electronic structure, as well as its
reactivity, have been studied by many researchers [23,

24, 25, 26, 27, 28, 29, 30, 31]. In the timing calculations
reported here, a triple-zeta plus polarization basis set
was employed. For carbon and hydrogen, the 6-311G
basis set of Krishnan et al. [32] was utilized; for silicon,
the McLean and Chandler basis set was used [33]. The
d and p polarization functions added are the default
values in GAMESS. This basis set gives rise to 277 basis
functions. Calculations were carried out on the ground
singlet state of silicocene using the closed-shell MP2
code in GAMESS. Triplet state calculations were carried
out using the UMP2 code in GAMESS. One full MP2
single-point gradient calculation and one frozen-core
MP2 single-point gradient calculation were carried out
for each state. The number of core orbitals is 15. For the
closed-shell calculation, there are 27 valence orbitals;
therefore, the full MP2 closed-shell calculation involves
42 active occupied orbitals, while the frozen-core cal-
culation involves 27 active occupied orbitals. For the
triplet calculation, there are 28 o and 26 f valence
orbitals; thus, the full UMP2 calculation requires 43 o
and 41 f active occupied orbitals, while the frozen-
core UMP2 calculation involves 28 o and 26 f active
occupied orbitals. The minimum amount of memory
required for the full UMP2 calculation on the triplet
is about 43 Mwords. Fifty Mwords were used, so only
one o and one f orbital could be transformed per batch.
The minimum amount of memory required for the
transformation of one closed-shell orbital is about
11 Mwords, so four orbitals could be transformed per
batch for this calculation.

The timings for the calculations are shown in Table 1.
All calculations were performed on an ultra SPARC2
300 MHz processor using 50 Mwords of memory. The
overall speedup of 1.4-1.7 is mainly due to the decrease
in the number of batches required in the transformation
step. The time required for an unrestricted open-shell

L

Silicocene

Si(CsHs)a

Fig. 3. The C,, isomer of silicocene
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Table 1. The total and a breakdown of the computation time for the full and frozen-core second-order perturbation theory (M P2) single-
point gradient calculations on silicocene [Si(CsHs),]. There are 277 basis functions. All calculations were carried out using an ultra
SPARC?2 300 MHz processor using 50 M words of memory

Step in algorithm Computation time (s)

Two-electron transformation Coupled perturbed  Two-electron Total

and MP2 energy Hartree—Fock gradient

Full closed-shell MP2 gradient 6,703.1 749.04 4,893.89 15,173.6
Frozen-core closed-shell MP2 gradient 5,137.5 785.1 3,052.7 10,754.8
Speedup for closed-shell calculation 1.30 0.95 1.60 1.41
Full open-shell unrestricted MP2 gradient 32,441.6 1,300.6 8,349.6 51,677.1
Frozen-core open-shell unrestricted MP2 gradient 18,602.4 1,368.8 5,865.3 30,849.2
Speedup for open-shell calculation 1.74 0.95 1.42 1.68

calculation is about 3 times that for a comparable 7. Scheiner AC, Scuseria GE, Rice JE, Lee TJ, Schaefer HF

1 -shell calculation. (1987) J Chem Phys 87:5361
closed-shell calculatio 8. Lee TJ, Allen WD, Schacfer HF (1987) J Chem Phys 87:7062

9. Rice JE, Lee TJ, Handy NC (1988) J Chem Phys 88:7011
10. Rendell AP, Lee TJ (1991) J Chem Phys 94:6219
9 Conclusion 11. Lee TJ, Rendell AP (1991) J Chem Phys 94:6229
12. Shroll RM, Edwards WD (1997) Int J Quantum Chem 63:1037

. .. . . 13. Baeck KK, Watts JD, Bartlett RJ (1997) J Chem Phys 107:3853
A detailed derivation of the frozen-orbital MP2 gradient ;" | .o TJ, Racine SC, Rice JE, Rendell AP (1995) Mol Phys

has been presented. The density matrix contributions 85:561

and CPHF equations were explicitly derived in the spin-  15. Webb SP, Fletcher GD, Gordon MS (1997) In: Webb SP PhD

orbital basis and reduced to the unrestricted open-shell dissertation. Towa State University ,

and restricted closed-shell cases. Details of summation 10 Schmidt MW, Baldridge KK, Boatz JA, Jensen JH, Koseki S,
. o . Matsunaga N, Gordon MS, Nguyen KA, Su S, Windus TL,

ranges angl other modlﬁcatlons resulting from the Elbert ST, Montgomery J, Dupuis M (1993) J Comput Chem

frozen-orbital approximation have been presented. 14:1347

Having determined the appropriate expressions and 17. Yamaguchi Y, Osamura O, Goddard JD, Schaefer HF 111

their summation ranges, the reduction in computational (1994) A new dimension to quanfum mechanics. Analytical
derivative methods in ab initio molecular electronic structure

effort resulting from the frozen-orbital approximation theory. Oxford University Press, Oxford
has been examined. The main reduction in time is due to  18. Salter EA, Trucks GW, Fitzgerald G, Bartlett RJ (1987) Chem
the decrease in the number of batches required in Phys Lett 141:61

transformation steps. Test calculations on silicocene 19- Handy NC, Schaefer HF III (1984) J Chem Phys 81:5031

how that this time reduction can be considerable 20. Head-Gordon M (199) Mol Phys 96:673

show C : > 21. (a) Gordon MS (1976) Chem Phys Lett 44:507; (b) Del Bene JE,

especially when the memory available is close to the Ditchfield R, Pople JA (1971) J Chem Phys 55:2236

minimum required. 22. Dupuis M, Chin S, Marquez A (1994) In: Mali GL (ed)
Relativistic and electron correlation effects in molecules and
solids. Plenum, New York, p 315

23. Baxter SG, Cowley AH, Lasch JG, Lattman M, Sharum WP,
Stewart CA (1982) J Am Chem Soc 104:4064

24. Glidewell C (1985) J Organomet Chem 286:289

25. Jutzi P, Holtmann U, Kanne D, Krueger C, Blom R, Gleiter R,
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