
Abstract. A detailed derivation of the frozen-orbital
second-order perturbation theory (MP2) analytic gra-
dient in the spin-orbital basis is presented. The sum-
mation ranges and modification of the MP2 gradient
terms that result from the frozen-orbital approximation
are clearly identified. The frozen-orbital analytic gra-
dients for unrestricted MP2 and closed-shell MP2 are
determined from the spin-orbital derivation. A discus-
sion of useful implementation procedures is included.
Timings from full and frozen-orbital MP2 gradient cal-
culations on the molecule silicocene (the silicon analog
of the sandwich compound ferrocene) are also presented.

Keywords: Analytic derivative – Møller-Plesset
perturbation theory – Frozen core

1 Introduction

The analytic expression for the derivative of the full sec-
ond-orderperturbation theory (MP2) energy (all electrons
correlated) with respect to nuclear coordinate displace-
ment for closed-shell systems has long been known [1]. In
addition, perturbation theory with unrestricted wave-
functions has been used to describe open-shell systems for
many years. With the development and implementation
of more efficient methodology and algorithms [2] has
come the widespread use of MP2 gradients to include the
effects of dynamic electron correlation in the determina-
tion of molecular structure. The recent development of
parallel algorithms [3, 4] has greatly extended the size of
the systems to which the method can be applied.

Usually, the effects of including dynamic correlation
in the inner shell or core electrons of a molecule are
minimal in terms of relative energies and geometry
parameters, and therefore core electrons are often not
included in the perturbation treatment; this is known as
the frozen-core approximation. In addition to an asso-
ciated reduction in computational effort [2], the frozen-
core approximation can be preferable to full MP2, as the
description of core electrons is of lower quality than the
description of valence electrons in many basis sets. Vir-
tual orbitals may also be frozen or ‘‘deleted’’; this cor-
responds to neglecting the excitations into these orbitals.

The modification of the MP2 energy expression to
exclude electrons in frozen core or virtual orbitals is a
trivial matter which requires simply that the summation
over the orbitals excludes those chosen to be frozen.
Using the notation defined in the next section, the
frozen-orbital MP2 energy expression is

E 2ð Þ ¼ 1

4

Xact

ij

Xvact

ab

iaj jbjð ÞT ab
ij ; ð1Þ

where an amplitude in the spin-orbital basis is defined as

T ab
ij ¼ iaj jbjð Þ

�
Dab

ij ; ð2Þ

where

ia jbkð Þ � ia jbjð Þ � ib jajð Þ ð3Þ

and

Dab
ij ¼ ei þ ej � ea � eb : ð4Þ

The reduction in the number of transformed two-
electron integrals required in Eq. (1) results in a reduc-
tion of the computation time needed for the calculation.
Although the modification required for the MP2 energy
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expression is minor, that for the MP2 analytic gradient
expression is far from trivial and involves so-called
dependent-pair contributions.

Groundwork for the treatment of frozen-orbital
dependent-pair contributions, as well as other types of
dependent-pair contributions, to analytic energy gra-
dients was carried out in the mid 1980s [5, 6]. Since then,
these techniques have been further developed and
applied to numerous correlated methods [7, 8, 9, 10, 11,
12, 13, 14, 15]. For example, Rice et al. [5] and Lee at al.
[8] have discussed dependent-pair contributions in con-
figuration interaction methods, while Scheiner et al. [7],
Rice et al. [9], Rendell and Lee [10], and Lee and Rendell
[11] have discussed such contributions in coupled-cluster
methods. More recently, some of the complications in-
volved in frozen-core analytic energy gradient methods
for various coupled-cluster and perturbation theory
methods have been briefly discussed by Baeck et al. [13]
and the derivation of the frozen-orbital closed-shell MP2
gradient expression has been presented by Lee et al. [14]
and Webb et al. [15]. However, no explicit derivation of
the analytic frozen-orbital spin-orbital or unrestricted
MP2 (UMP2) gradient expression is currently available
in the literature, even though UMP2 gradients have
previously been implemented in various electronic
structure programs.

The aim of this overview is twofold. The first is
to present a detailed, step-by-step, derivation of the
analytic frozen-orbital spin-orbital gradient expression
and subsequent spin-integration to UMP2 and MP2
expressions, in order to provide a pedagogical application
of dependent-pair techniques that is useful to new
researches in this field. The second goal is to present the
UMP2 frozen-orbital gradient expression in sufficient
detail to facilitate serial and parallel implementation in
electronic structure codes such as GAMESS [16].

2 Notation, definitions, and techniques

The notation, definitions, and techniques that will be
used extensively during the course of the derivation of
the MP2 frozen-orbital gradient are introduced. Con-
siderable use is made of the excellent book by Yama-
guchi et al. [17].

2.1 Notation

The indices, summation ranges, and symbols used
throughout the derivation are summarized here.

Indices

– J, K: frozen-core molecular orbital (MO).
– i, j, k, l: any occupied MO.
– a, b, c: any virtual MO.
– B, C: frozen virtual MO.

– p, q, r, s, t: any MO.
– l,m,k,r: atomic orbital (AO).
– Superscript x: derivative with respect to nuclear
displacement x.

– Superscript (x): derivatives of AO integrals only (not
expansion coefficients).

– Superscript a: a MO, orbital energy, etc. (for unrest-
ricted Hartree–Fock, UHF).

– Superscript b: b MO, orbital energy, etc. (for UHF).
– Superscript CS: closed-shell matrix.
– Superscript (2): MP2 energy or density correction.

Summation ranges

– act: active occupied MOs (usually valence orbitals).
– core: frozen-core MOs (usually inner shells).
– occ: all occupied MOs (core+act).
– vact: active virtual MOs.
– vf: frozen virtual MOs.
– vall: all virtual MOs (vact+vf).
– all: all MOs.

Symbols

– (pq|rs): electron repulsion integral (ERI) in the MO
basis, where p and q refer to electron 1 and r and s
refer to electron 2.

– Hpq: one-electron Hamiltonian integral.
– Spq: overlap integral.
– ep: self-consistent-field (SCF) orbital energy.
– Ux

pq: orbital response to nuclear displacement x.
– pj i: MO in bra-ket notation.
– L: so-called MP2 Lagrangian.

2.2 Definitions

Definitions used in the derivation are summarized here.

Derivatives with respect to a perturbation x

The derivative of a MO is given by [17]

@ pj i
@x
� pj ix¼

XAO

l

Clp lj i
 !x

¼
XAO

l

Clp lj ixþ
XAO

l

Cx
lp lj i

¼ pj i xð Þþ
XAO

l

Xall

q

Ux
qpClq lj i ¼ pj i xð Þþ

Xall

q

Ux
qp qj i :

ð5Þ

Since an ERI in the MO basis is a linear combination
of ERIs in the AO basis

pq rsjð Þ ¼
X

lmkr

ClpCmqCkrCrs lm krjð Þ ; ð6Þ
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it follows that

pq rsjð Þx ¼ pq rsjð Þ xð Þ þ
Xall

t

Ux
tp tq rsjð Þ þ

Xall

t

Ux
tq pt rsjð Þ

þ
Xall

t

Ux
tr pq tsjð Þ þ

Xall

t

Ux
ts pq rtjð Þ : ð7Þ

The derivative of the orthonormality constraint
Spq=dpq yields

Ux
pq þ Ux

qp þ S xð Þ
pq ¼ 0 ; ð8Þ

and thus

Ux
pp ¼ �

1

2
S xð Þ

pp : ð9Þ

Coupled perturbed Hartree–Fock equations
in the spin-orbital basis

These equations are derived by taking the derivative of
the Fock matrix equation in the spin-orbital basis. (See
related closed-shell derivation in Ref. [17]). The orbital
responses may be expressed in terms of orbital energies,
overlap integrals, and other quantities by writing

Ux
pq ¼

1

eq � ep
� �Qx

pq ; ð10Þ

where

Qx
pq � Bx

pq þ
Xvall

c

Xocc

k

Ux
ckApqck ; ð11Þ

Apqrs ¼ 2 pq rsjð Þ � pr qsjð Þ � ps qrjð Þ ; ð12Þ

Bx
pq ¼ F xð Þ

pq � S xð Þ
pq eq �

1

2

Xocc

kl

S xð Þ
kl Apqlk ; ð13Þ

F xð Þ
pq ¼ H xð Þ

pq þ
Xocc

k

pq kkjð Þ xð Þ � pk qkjð Þ xð Þ
h i

: ð14Þ

If p=q, it may be shown that Eq. (11) can be written
in the simpler form

ex
p ¼ Qx

pp : ð15Þ

The coupled perturbed Hartree–Fock (CPHF) equa-
tions are then written as

Xocc

i

Xvall

a

dabdij ei � eað Þ � Aaibj
� �

Ux
ai ¼ Bx

bj ; ð16Þ

or, in matrix form, as

A0U
x ¼ Bx; ð17Þ

where

A0aibj ¼ dabdij ei � eað Þ � Aaibj: ð18Þ

2.3 Techniques

There are several important tools used throughout the
paper, some familiar and some less well known, that are
summarized here.

Interchange of indices owing to equivalence
on summation

For example,
X

ab

ia jbjð Þx ib jajð Þ ¼
X

ab

ia jbjð Þ ib jajð Þx : ð19Þ

X

ij

ixa jbjð Þ þ ia jxbjð Þ½ � ¼ 2
X

ij

ixa jbjð Þ : ð20Þ

Splitting summations

For example,
X

k

Ux
ki ¼

X

k 6¼i

Ux
ki þ Ux

ii ¼
X

k>i

Ux
ki þ

X

k\i

Ux
ki þ Ux

ii : ð21Þ

The chain rule

For example,

@

@x
1

Dab
ij

 !
¼ @

@Dab
ij

1

Dab
ij

 !
@Dab

ij

@x
¼� 1

Dab
ij

 !2

Dab
ij

� �x
: ð22Þ

Cross-multiplication

For example,

1

Dab
ij
� 1

Dab
kj

¼
Dab

kj � Dab
ij

Dab
ij Dab

kj

¼ ek � ei

Dab
ij Dab

kj

: ð23Þ

3 Derivation of the MP2 gradient equation
in the spin-orbital basis

In this section, the frozen-orbital MP2 gradient expres-
sion is derived in the spin-orbital basis. First, the general
form of the MP2 gradient is examined. Then, the deri-
vative of the MP2 gradient expression is considered,
orbital responses are introduced, density matrices are
introduced, and the CPHF equations are solved. Sub-
sequently, the resulting one-particle density matrices are
summarized.

3.1 General form of the MP2 gradient

When written in the AO basis, the MP2 energy gradient
takes the following general form that applies to all
analytic first derivatives with respect to a nuclear dis-
placement x:
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Ex ¼
XAO

lm

PMP2
lm Hx

lm þ
XAO

lm

W MP2
lm Sx

lm þ
XAO

lmkr

CMP2
lmkr lm krjð Þx :

ð24Þ

In Eq. (24), PMP2
lc is the one-particle density matrix,

W MP2
lc is the energy-weighted density matrix, and CMP2

lckr is
the two-particle density matrix (in the AO basis). In
practice, Eq. (24) is evaluated by forming the density
matrices in the MO basis and back-transforming these
matrices to the AO basis for contraction with AO integral
derivatives. The task ahead, then, is to apply the appro-
priate restrictions to introduce the frozen-orbital approx-
imation and derive the MO counterparts of the density
matrices in Eq. (24). The MP2 density matrices are ex-
pressed as a sumof the SCFdensitymatrices plus theMP2
density correction matrices; therefore, more specifically,
theMP2 density correction matrices must be derived.

3.2 Derivative of the MP2 energy correction

Taking the derivative of the frozen-orbital MP2 energy
contribution (Eq. 1) with respect to nuclear displace-
ment x gives

E 2ð Þx ¼ 1

4

Xact

ij

Xvirt

ab

iaj jbjð ÞxT ab
ij þ iaj jbjð Þ T ab

ij

� �xh i
: ð25Þ

The amplitude derivative is

T ab
ij

� �x
¼ iaj jbjð Þx

�
Dab

ij þ iaj jbjð Þ 1
�

Dab
ij

� �x
: ð26Þ

Substituting Eq. (26) into Eq. (25), and recognizing
that the first term of Eq. (26) yields a term equivalent to
the first term (in the brackets) of Eq. (25), gives

E 2ð Þx ¼ 1

2

Xact

ij

Xvact

ab

iaj jbjð ÞxT ab
ij

þ 1

4

Xact

ij

Xvact

ab

iaj jbjð Þ iaj jbjð Þ 1
�

Dab
ij

� �x
: ð27Þ

Applying the chain rule (Eq. 22) to the second term
of Eq. (27) yields

E 2ð Þx ¼ 1

2

Xact

ij

Xvact

ab

iaj jbjð ÞxT ab
ij

� 1

4

Xact

ij

Xvact

ab

iaj jbjð Þ iaj jbjð Þ Dab
ij

� �x
�

Dab
ij

� �2
:

ð28Þ

3.3 Expansion using orbital responses

The next step is to expand the derivative ERIs (ia||jb)x

in terms of orbital responses. The expression for ERI

derivatives (Eq. 7) is substituted into Eq. (28), which
introduces the unknown expansion coefficients or orbital
responses Ux

pq.
�
Dab

ij

�x
is replaced with specific orbital

energy derivatives (derivative of Eq. 4), leading to

E 2ð Þx¼ 1

2

Xact

ij

Xvact

ab

T ab
ij

	
iaj jbjð Þ xð Þþ

Xall

p

Ux
pi paj jbjð Þ

þ
Xall

p

Ux
pa ipj jbjð Þþ

Xall

p

Ux
pj iaj pbjð Þþ

Xall

p

Ux
pb iaj jpjð Þ




�1
4

Xact

ij

Xvact

ab

iaj jbjð Þ
Dab

ij
T ab

ij ex
i þex

j�ex
a�ex

b

� �
: ð29Þ

Since the summation ranges of i and j are identical, as
are those for a and b, Eq. (29) simplifies to

E 2ð Þx ¼1

2

Xact

ij

Xvact

ab

T ab
ij

	
iaj jbjð Þ xð Þþ2

Xall

p

Ux
pi paj jbjð Þ

þ2
Xall

p

Ux
pa ipj jbjð Þ

#
�1

2

Xact

ij

Xvact

ab

iaj jbjð Þ
Dab

ij
T ab

ij ex
i �ex

a

� �
:

ð30Þ

The two different types of orbital responses in
Eq. (30) can be visualized in Fig. 1. Both have a sum-
mation over the full range of orbitals,

Pall
p , which will

be divided in two different ways into occupied and vir-
tual ranges according to

Pall
p ¼

Pcore
K þ

Pact
k þ

Pvall
c

and
Pall

p ¼
Pocc

k þ
Pvact

c þ
Pvf

C . This creates six

different types of responses:

E 2ð Þx ¼ 1

2

Xact

ij

Xvact

ab

T ab
ij

	
iaj jbjð Þ xð Þþ2

Xcore

K

Ux
Ki Kaj jbjð Þ

þ 2
Xact

k

Ux
ki kaj jbjð Þ þ 2

Xvall

c

Ux
ci caj jbjð Þ

þ 2
Xocc

k

Ux
ka ikj jbjð Þ þ 2

Xvact

c

Ux
ca icj jbjð Þ

þ2
Xvf

C

Ux
Ca iCj jbjð Þ

#
� 1

2

Xact

ij

Xvact

ab

T ab
ij T ab

ij ex
i � ex

a

� �
:

ð31Þ

Fig. 1. Pictorial representation of the orbital response matrix,
where all, core, act, vact, and vf are the relevant summation ranges
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In this way, the orbital responses are divided into
diagonal blocks of responses (occupied–occupied and
virtual–virtual responses such as Ux

Ki, Ux
ki, Ux

ca, and
Ux

Ca) and off-diagonal blocks of responses (virtual–
occupied and occupied–virtual responses such as Ux

ci
and Ux

ka). These responses may be visualized in Fig. 2.
They are divided this way because some of the tech-
niques used in the next section require that indices
run over the same summation ranges; for example, k
and i both run over active MOs in the third term of
Eq. (31).

3.4 Replacement of unknown responses and removal
of singularities

Both the diagonal and off-diagonal responses must be
replaced with known quantities before the expression
resembles the general form of the MP2 gradient (Eq. 24).
The unknown occupied–occupied and virtual–virtual
orbital responses in Eq. (31) will be substituted with Qx

pq
terms using Eq. (10). The issue of potential singularities
introduced by this substitution must also be addressed.

Starting with the active–active term in Eq. (31), the
response term is split into two equal parts. In the second
of these parts, Ux

ki is substituted using Eq. (8):

Xact

ij

Xvact

ab

Xact

k

T ab
ij Ux

kiðkajjjbÞ ¼ 1

2

Xact

ij

Xvact

ab

	Xact

k

Ux
kiT

ab
ij ðkajjjbÞ

�
Xact

k

Ux
ikT ab

ij ðkajjjbÞ


� 1

2

Xact

ijk

Xvact

ab

SðxÞki T ab
ij ðkajjjbÞ ð32Þ

Next, the summations are split according to Eq. (21)
(note that this can only be done because the summation
ranges of k and i are equal in Eq. 32), as

Xact

k

Ux
kiT

ab
ij kaj jbjð Þ ¼

Xact

k>i

Ux
kiT

ab
ij kaj jbjð Þ

þ
Xact

k<i

Ux
kiT

ab
ij kaj jbjð Þ þ Ux

iiT
ab
ij iaj jbjð Þ: ð33Þ

Substituting Eq. (33) into Eq. (32) for both the Ux
ki

and Ux
ik terms yields the following active–active expres-

sion:

Xact

ij

Xvact

ab

Xact

k

T ab
ij Ux

kiðkajjjbÞ ¼ 1

2

Xact

ij

Xvact

ab

	Xact

k>i

Ux
kiT

ab
ij ðkajjjbÞ

þ
Xact

k\i

Ux
kiT

ab
ij ðkajjjbÞ



þ 1

2

Xact

ij

Xvact

ab

Ux
iiT

ab
ij ðkajjjbÞ

� 1

2

Xact

ij

Xvact

ab

	Xact

k>i

Ux
ikT ab

ij ðkajjjbÞ þ
Xact

k\i

Ux
ikT ab

ij ðkajjjbÞ



� 1

2

Xact

ij

Xvact

ab

Ux
iiT

ab
ij ðkajjjbÞ � 1

2

Xact

ijk

Xvact

ab

SðxÞki T ab
ij ðkajjjbÞ

ð34Þ

The two Ux
ii terms cancel. Interchanging iM k in each

sum over k<i (second term in each set of brackets) in
Eq. (34) yields

Xact

ij

Xvact

ab

Xact

k

T ab
ij Ux

ki kaj jbjð Þ

¼ 1

2

Xact

ij

Xvact

ab

Xact

k>i

Ux
kiT

ab
ij kaj jbjð Þ þ Ux

ikT ab
kj iaj jbjð Þ

h i

� 1

2

Xact

ij

Xvact

ab

Xact

k>i

Ux
ikT ab

ij kaj jbjð Þ þ Ux
kiT

ab
kj iaj jbjð Þ

h i

� 1

2

Xact

ijk

Xvact

ab

SðxÞki T ab
ij ðkajjjbÞ : ð35Þ

The Ux
ki and Ux

ik terms are collected, forming

Xact

ij

Xvact

ab

Xact

k

T ab
ij Ux

ki kaj jbjð Þ

¼ 1

2

Xact

ij

Xvact

ab

Xact

k>i

Ux
kiT

ab
ij kaj jbjð Þ � Ux

kiT
ab
kj iaj jbjð Þ

h i

� 1

2

Xact

ij

Xvact

ab

Xact

k>i

Ux
ikT ab

ij kaj jbjð Þ � Ux
ikT ab

kj iaj jbjð Þ
h i

� 1

2

Xact

ijk

Xvact

ab

S xð Þ
ki T ab

ij kaj jbjð Þ : ð36Þ

The numerators of the terms multiplying the Ux
ki and

Ux
ik responses in Eq. (36) are equivalent and may be

combined:

Xact

ij

Xvact

ab

Xact

k

T ab
ij Ux

ki kaj jbjð Þ

¼ 1

2

Xact

ij

Xvact

ab

Xact

k>i

Ux
ki iaj jbjð Þ kaj jbjð Þ 1

Dab
ij
� 1

Dab
kj

 !

� 1

2

Xact

ij

Xvact

ab

Xact

k>i

Ux
ik iaj jbjð Þ kaj jbjð Þ 1

Dab
ij
� 1

Dab
kj

 !

� 1

2

Xact

ijk

Xvact

ab

S xð Þ
ki T ab

ij kaj jbjð Þ : ð37ÞFig. 2. Pictorial representation of the orbital response matrix,
where core, act, occ, vact,vf, and vall are the relevant summation
ranges
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Now, substitution for Ux
ki and Ux

ik occurs according
to Eq. (10) and the denominators are cross-multiplied
(Eq. 23), which enables cancellation of the orbital
energy terms that otherwise would result in singularities
when MOs k and i are degenerate. The first term in
Eq. (37) is then

1

2

Xact

ij

Xvact

ab

Xact

k>i

�Qx
ki

ek � eið Þ iaj jbjð Þ kaj jbjð Þ ek � eið Þ
Dab

ij Dab
kj

¼ � 1

2

Xact

ij

Xvact

ab

Xact

k>i

Qx
kiT

ab
ij T ab

kj : ð38Þ

The second term in Eq. (37) is

� 1

2

Xact

ij

Xvact

ab

Xact

k>i

Qx
ik

ek � eið Þ iaj jbjð Þ kaj jbjð Þ ek � eið Þ
Dab

ij Dab
kj

¼ � 1

2

Xact

ij

Xvact

ab

Xact

k>i

Qx
ikT ab

ij T ab
kj : ð39Þ

Collecting like terms gives

Xact

ij

Xvact

ab

Xact

k

T ab
ij Ux

ki kaj jbjð Þ

¼�
Xact

ij

Xvact

ab

Xact

k>i

Qx
kiþQx

ik

2

� �
T ab

ij T ab
kj

�1

2

Xact

ijk

Xvact

ab

S xð Þ
ki T ab

ij kaj jbjð Þ : ð40Þ

Now, the substitution of Qx
ii for ex

i (Eq. 15) in Eq. (31)
and the combination of this term with the first term in
Eq. (40) produces

�
Xact

ij

Xvact

ab

Xact

k>i

Qx
ki þ Qx

ik

2

� �
T ab

ij T ab
kj �

1

2

Xact

ij

Xvact

ab

Qx
iiT

ab
ij T ab

ij

¼ � 1

2

Xact

ijk

Xvact

ab

Qx
ki þ Qx

ik

2

� �
T ab

ij T ab
kj ; ð41Þ

where the sum over k has been expanded to include all
active orbitals and divided by 2. This procedure is the
reverse of that in Eq. (33). All terms in the expression
for Qx

pq (Eqs. 11, 13) except for the orbital energy term
(second term in Eq. 13) are symmetric with respect to
interchange of p and q, so the symmetrized expression in
Eq. (41) may be simplified later.

The vact–vact rotations are dealt with in an exactly
analogous manner. Owing to the opposite signs of the
virtual orbital energies, the cross-multiplication step
(Eqs. 37, 38) results in the opposite sign to the active–
active case:

Xact

ij

Xvact

ab

Xvact

c>a

Qx
ca þ Qx

ac

2

� �
T ab

ij T cb
ij þ

1

2

Xact

ij

Xvact

ab

Qx
aaT ab

ij T ab
ij

¼ 1

2

Xact

ij

Xvact

abc

Qx
ca þ Qx

ac

2

� �
T ab

ij T cb
ij : ð42Þ

Now consider the frozen-core–active term that was
separated from the active–active term in Eq. (31). Split-
ting the term into two equal parts, substituting for Ux

Ki
usingEq. (8) in the secondof these parts, and thenmaking
the appropriate substitutions according to Eq. (10) gives

Xact

ij

Xvact

ab

Xcore

K

Ux
KiT

ab
ij Kaj jbjð Þ

¼ 1

2

Xact

ij

Xvact

ab

Xcore

K

Ux
KiT

ab
ij Kaj jbjð Þ þ Ux

KiT
ab
ij Kaj jbjð Þ

h i

ð43Þ

¼ 1

2

Xact

ij

Xvact

ab

Xcore

K

Ux
KiT

ab
ij Kaj jbjð Þ

� 1

2

Xact

ij

Xvact

ab

Xcore

K

Ux
iKT ab

ij Kaj jbjð Þ

� 1

2

Xact

ij

Xvact

ab

Xcore

K

S xð Þ
iK T ab

ij Kaj jbjð Þ ð44Þ

¼ 1

2

Xact

ij

Xvact

ab

Xcore

K

Qx
Ki

ei � eKð Þ T
ab
ij Kaj jbjð Þ

þ 1

2

Xact

ij

Xvact

ab

Xcore

K

Qx
iK

ei � eKð Þ T
ab
ij Kaj jbjð Þ

� 1

2

Xact

ij

Xvact

ab

Xcore

K

S xð Þ
iK T ab

ij Kaj jbjð Þ : ð45Þ

It is not necessary to remove the orbital energy dif-
ference (ei)eK) that could potentially produce singula-
rities because, as Rice et al. [5] point out for the
configuration interaction case, if the core and active
MOs are chosen sensibly (usually chemical cores and
valence orbitals) K and i should never be degenerate and
singularities are always avoided. A similar procedure
may be followed for the frozen virtual–active virtual
responses, yielding

Xact

ij

Xvact

ab

Xvf

C

Ux
CaT ab

ij iCj jbjð Þ

¼ 1

2

Xact

ij

Xvact

ab

Xvf

C

Qx
Ca

ea � eCð Þ T
ab
ij iCj jbjð Þ

þ 1

2

Xact

ij

Xvact

ab

Xvf

C

Qx
aC

ea � eCð Þ T
ab
ij iCj jbjð Þ

� 1

2

Xact

ij

Xvact

ab

Xvf

C

S xð Þ
aC T ab

ij iCj jbjð Þ : ð46Þ
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3.5 Identification of density matrices

At this point, the diagonal responses (terms 2, 3, and 6
in Eq. 31) and the orbital energy derivatives (term 7 in
Eq. 31) have been replaced with terms involving Qx

pq and
S xð Þ

pq . The general form of the energy derivative (Eq. 24)
enables identification of density matrices. Any term that
multiples a one-electron Hamiltonian derivative integral
H xð Þ

pq is defined as an MP2 density correction term P 2ð Þ
pq .

Likewise, any term that multiplies an overlap integral
derivative S xð Þ

pq is an energy-weighted density correction

term W 2ð Þ
pq [18].

By inspection of Eq. (41) and by recalling that the
expanded definition of Qx

pq (Eq. 11) contains H xð Þ
pq

(Eqs. 13, 14), the active–active MP2 density correction

P 2ð Þ
ki is defined as

� 1

2

Xact

ijk

Xvall

ab

Qx
ki þ Qx

ik

2

� �
T ab

ij T ab
kj �

Xact

ki

Qx
ki þ Qx

ik

2

� �
P 2ð Þ

ki ;

ð47Þ

the core–active MP2 density correction P 2ð Þ
Ki , by inspec-

tion of Eq. (45), is defined by

1

2

Xact

ij

Xvall

ab

Xcore

K

Qx
Ki

ei � eKð Þ T
ab
ij Kaj jbjð Þ �

Xact

i

Xcore

K

Qx
KiP

2ð Þ
Ki :

ð48Þ

Note that Eq. (47) shows that P 2ð Þ
ki ¼ P 2ð Þ

ik , i.e.,

� 1
2

Pact
j

Pvall
ab T ab

ij T ab
kj ¼ � 1

2

Pact
j

Pvall
ab T ab

kj T ab
ij . In addi-

tion, terms 1 and 2 of Eq. (45) clearly show that

P 2ð Þ
Ki ¼ P 2ð Þ

iK .
An active–active energy-weighted density correction

W 2ð Þ
ki I½ � (labeled [I] because additional energy-weighted

density correction terms labeled [II] and [III] follow) is
defined by inspection of the second term in Eq. (40),

� 1

2

Xact

ijk

Xvall

ab

S xð Þ
ki T ab

ij kaj jbjð Þ �
Xact

ki

S xð Þ
ki W 2ð Þ

ki I½ � : ð49Þ

The third term in Eq. (45) defines W 2ð Þ
iK ,

� 1

2

Xact

ij

Xvall

ab

Xcore

K

S xð Þ
iK T ab

ij Kaj jbjð Þ �
Xact

i

Xcore

K

S xð Þ
iK W 2ð Þ

iK I½ � :

ð50Þ

Virtual–virtual densities P 2ð Þ
ca , P 2ð Þ

Ca , W 2ð Þ
ca , and W 2ð Þ

Ca may
be defined in an exactly analogous manner.

3.6 MP2 Lagrangian, CPHF equations, and Z-vector
method

If the relevant substitutions into Eq. (31) are made, the
derivative of the frozen-orbital MP2 energy at this point
is given by

E 2ð Þx¼
Xact

ij

Qx
ijþQx

ji

2

� �
P 2ð Þ

ij þ
Xact

ij

S xð Þ
ij W 2ð Þ

ij I½ �

þ
Xvact

ab

Qx
abþQx

ba

2

� �
P 2ð Þ

ab þ
Xvact

ab

S xð Þ
ab W 2ð Þ

ab I½ �

þ
Xact

i

Xcore

K

Qx
KiþQx

iK

� �
P 2ð Þ

Ki þ
Xact

i

Xcore

K

S xð Þ
iK W 2ð Þ

iK I½ �

þ
Xvact

a

Xvf

C

Qx
CaþQx

aC

� �
P 2ð Þ

aC þ
Xvact

a

Xvf

C

S xð Þ
aC W 2ð Þ

aC I½ �

þ
Xact

ij

Xvact

ab

Xvall

c

Ux
ci caj jbjð ÞT ab

ij

þ
Xact

ij

Xvact

ab

Xocc

k

Ux
ka ikj jbjð ÞT ab

ij þ
1

2

Xact

ij

Xvact

ab

T ab
ij iaj jbjð Þ xð Þ :

ð51Þ

The remaining unknowns are now virtual–occupied
and occupied–virtual orbital responses such as those in
the ninth and tenth terms in Eq. (51) (Ux

ci and Ux
ka). In

addition, the substitution of the diagonal responses by
Qx

pq terms (first, third, fifth, and seventh terms of Eq. 51)
introduces virtual–occupied responses through Eq. (11).
Substitution of Eq. (11) for Qx

pq in Eq. (51) leads to

E 2ð Þx ¼
Xact

ij

Bx
ijþBx

ji

2

� �
P 2ð Þ

ij þ
Xact

ij

S xð Þ
ij W 2ð Þ

ij I½ �

þ
Xvact

ab

Bx
abþBx

ba

2

� �
P 2ð Þ

ab þ
Xvact

ab

S xð Þ
ab W 2ð Þ

ab I½ �

þ
Xact

i

Xcore

K

Bx
KiþBx

iK

� �
P 2ð Þ

Ki þ
Xact

i

Xcore

K

S xð Þ
iK W 2ð Þ

iK I½ �

þ
Xvact

a

Xvf

C

Bx
CaþBx

aC

� �
P 2ð Þ

aC þ
Xvact

a

Xvf

C

S xð Þ
aC W 2ð Þ

aC I½ �

þ
Xact

ij

Xvall

c

Xocc

k

Ux
ckAijckP ð2Þij þ

Xvact

ab

Xvall

c

Xocc

k

Ux
ckAabckP ð2Þab

þ2
Xact

i

Xcore

J

Xvall

c

Xocc

k

Ux
ckAiJckP ð2ÞiJ

þ2
Xvact

a

Xvf

B

Xvall

c

Xocc

k

Ux
ckAaBckP ð2ÞaB

þ
Xact

ij

Xvact

ab

Xvall

c

Ux
ci ca jbkð ÞT ab

ij

þ
Xact

ij

Xvact

ab

Xocc

k

Ux
ka ik jbkð ÞT ab

ij

þ1

2

Xact

ij

Xvact

ab

T ab
ij ia jbkð Þ xð Þ ; ð52Þ

where the symmetry property
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X

pq

Xvall

c

Xocc

k

Ux
ckApqck ¼

X

pq

Xvall

c

Xocc

k

Ux
ckAqpck ð53Þ

has been used to simplify the form of the response terms
that came from Qx

pq.
Before carrying out the CPHF procedure on Eq. (52),

Eq. (8) must be applied to the 14th term in order
to switch the response indices. This introduces an
occupied–virtual energy-weighted density term:

Xact

ij

Xvact

ab

Xocc

k

Ux
ka ikj jbjð ÞT ab

ij ¼�
Xact

ij

Xvact

ab

Xocc

k

Ux
ak ikj jbjð ÞT ab

ij

�
Xact

ij

Xvact

ab

Xocc

k

S xð Þ
ak ikj jbjð ÞT ab

ij :

ð54Þ

The core and active summations in terms 9 and 11 of
Eq. (52) may be combined into an occupied summation,
and a similar procedure may be used on terms 10 and
12. Next, Eq. (54) is substituted into Eq. (52) and
virtual–occupied response terms are grouped as

E 2ð Þx ¼
Xact

ij

Bx
ij þ Bx

ji

2

� �
P 2ð Þ

ij þ
Xact

ij

S xð Þ
ij W 2ð Þ

ij I½ �

þ
Xvact

ab

Bx
ab þ Bx

ba

2

� �
P 2ð Þ

ab þ
Xvact

ab

S xð Þ
ab W 2ð Þ

ab I½ �

þ
Xact

i

Xcore

K

Bx
Ki þ Bx

iK

� �
P 2ð Þ

Ki þ
Xact

i

Xcore

K

S xð Þ
iK W 2ð Þ

iK I½ �

þ
Xvact

a

Xocc

k

S xð Þ
ak W 2ð Þ

ak I½ � þ
Xvact

a

Xvf

C

Bx
Ca þ Bx

aC

� �
P 2ð Þ

aC

þ
Xvact

a

Xvf

C

S xð Þ
aC W 2ð Þ

aC I½ � þ
Xvall

c

Xocc

k

Ux
ck

�
	Xocc

ij

P 2ð Þ
ij Aijck þ

Xvall

ab

P 2ð Þ
ab Aabck

� Nc

Xact

ij

Xvact

b

T cb
ij ikj jbjð Þ þ Nk

Xact

j

Xvact

ab

T ab
kj caj jbjð Þ




þ 1

2

Xact

ij

Xvact

ab

iaj jbjð Þ xð ÞT ab
ij ; ð55Þ

where

Nk �
1; for k ¼ active
0; for k ¼ core




and

Nc �
1; for c ¼ vact
0; for c ¼ vf



:

The terms in the brackets in Eq. (55) may be defined
as the MP2 Lagrangian. After changing indices, the
off-diagonal term has the form

X

ai

Ux
aiLai ; ð56Þ

where

Lai ¼ þ
Xocc

jk

P 2ð Þ
jk Aaijk þ

Xvall

bc

P 2ð Þ
bc Aaibc

� Na

Xact

jk

Xvact

b

T ab
jk ijj bkjð Þ þ Ni

Xact

j

Xvact

bc

T bc
ij abj jcjð Þ :

ð57Þ

The virtual–occupied responses Ux
ai must be

determined using the CPHF equations (Eq. 16). So
far, only the derivative with respect to x has been shown,
but there are derivatives with respect to x, y, and z for
each atom. The number of unknown response vectors
may be reduced from 3N, where N is the number of
atoms, to 1 by using the Z-vector method of Handy and
Schaefer [19] as follows:

X

ai

Ux
aiLai � LTUx ð58Þ

A0U
x ¼ Bx ð59Þ

Ux ¼ A0ð Þ�1Bx ð60Þ

LTUx ¼ LT A0ð Þ�1Bx ð61Þ

¼ ZTBx ; ð62Þ

where

ZT ¼ LT A0ð Þ�1 : ð63Þ

Thus, the following set of simultaneous equations
must be solved for Z:

A0ð ÞTZ ¼ L: ð64Þ

The elements of Z are obtained from solution of
linear Eq. (64) and the contribution from Eq. (58) is
evaluated according to Eq. (62) as
X

ai

Ux
aiLai ¼

X

ai

Bx
aiZai : ð65Þ

Since B contains core Hamiltonian derivatives
(Eqs. 13, 14), the elements of Z may be used to define
the virtual–occupied block of the density matrix:
X

ai

Bx
aiZai �

X

ai

Bx
aiP

2ð Þ
ai : ð66Þ

From Eqs. (16), (64), and (66), the following CPHF
equations are solved to find the virtual–occupied blocks
of the density matrix:
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Xvall

b

Xocc

j

Aaibj þ dabdij eb � ej
� �� �

P 2ð Þ
bj ¼ �Lai : ð67Þ

At this point, the gradient expression (Eq. 55) may be
written more simply as

E 2ð Þx ¼
Xocc

ij

Bx
ij þ Bx

ji

2

� �
P 2ð Þ

ij þ
Xocc

ij

S xð Þ
ij W 2ð Þ

ij I½ �

þ
Xvall

ab

Bx
ab þ Bx

ba

2

� �
P 2ð Þ

ab þ
Xvall

ab

S xð Þ
ab W 2ð Þ

ab I½ �

þ
Xvall

a

Xocc

i

Bx
aiP

2ð Þ
ai þ

Xvact

a

Xocc

i

S xð Þ
ai W 2ð Þ

ai I½ �

þ 1

2

Xact

ij

Xvact

ab

iaj jbjð ÞðxÞT ab
ij ; ð68Þ

where the active–active and active–core contributions
have been combined into an occupied–occupied con-
tribution and the vact–vact and vact–vf contributions
have been combined into a virtual–virtual contribution.

3.7 Additional energy-weighted density terms

In Eq. (68), the MP2 density correction terms P 2ð Þ
pq are

multiplied by Bx
pq, which gives rise to additional energy-

weighted density terms which are labeled [II] and [III]
(listed in Sect. 3.8)). Making the appropriate substitu-
tions for Bx

pq according to Eq. (13) (and recognizing that
the first and third terms in Eq. 13 are symmetric to p and
q interchange), the MP2 frozen-orbital gradient expres-
sion may now be written as

E 2ð Þx ¼
Xocc

ij

P 2ð Þ
ij F xð Þ

ij � S xð Þ
ij

ei þ ej

2

� �
� 1

2

Xocc

kl

S xð Þ
kl Aijlk

" #

þ
Xocc

i

Xvall

a

P 2ð Þ
ai F xð Þ

ai � S xð Þ
ai ei �

1

2

Xocc

kl

S xð Þ
kl Aailk

" #

þ
Xvall

ab

P 2ð Þ
ab F xð Þ

ab � S xð Þ
ab

ea þ eb

2

� �
� 1

2

Xocc

kl

S xð Þ
kl Aablk

" #

þ
Xocc

ij

S xð Þ
ij W 2ð Þ

ij I½ � þ
Xvall

ab

S xð Þ
ab W 2ð Þ

ab I½ �

þ
Xvact

a

Xocc

i

S xð Þ
ai W 2ð Þ

ai I½ � þ 1

2

Xact

ij

Xvact

ab

iaj jbjð Þ xð ÞT ab
ij :

ð69Þ

Factors multiplying S xð Þ
pq terms are defined as W 2ð Þ

pq II½ �
and W 2ð Þ

pq III½ � matrices (see Sect. 3.8). The F xð Þ
pq terms may

now be substituted according to Eq. (14). At this point,
the MP2 frozen-orbital gradient expression is

E 2ð Þx¼
Xocc

ij

P 2ð Þ
ij H xð Þ

ij þ
Xocc

k

ij kkjð Þ xð Þ� ik jkjð Þ xð Þ
h i( )

þ
Xocc

i

Xvall

a

P 2ð Þ
ai H xð Þ

ai þ
Xocc

k

ai kkjð Þ xð Þ� ak ikjð Þ xð Þ
h i( )

þ
Xvall

ab

P 2ð Þ
ab H xð Þ

ab þ
Xocc

k

ab kkjð Þ xð Þ� ak bkjð Þ xð Þ
h i( )

þ
Xocc

ij

S xð Þ
ij W 2ð Þ

ij I½ �þ
Xvall

ab

S xð Þ
ab W 2ð Þ

ab I½ �þ
Xvact

a

Xocc

i

S xð Þ
ai W 2ð Þ

ai I½ �

þ
Xocc

ij

S xð Þ
ij W 2ð Þ

ij II½ �þ
Xvall

ab

S xð Þ
ab W 2ð Þ

ab II½ �

þ
Xvall

a

Xocc

i

S xð Þ
ai W 2ð Þ

ai II½ �

þ
Xocc

ij

S xð Þ
ij W 2ð Þ

ij III½ �þ1
2

Xact

ij

Xvact

ab

iajjjbð Þ xð ÞT ab
ij : ð70Þ

The ERI derivatives in terms 1, 2, 3, and 11 in
Eq. (70) will contribute to the two-electron density
matrix. Since a wavefunction type should be defined
before dealing further with these terms, the one-particle
gradient terms in the spin-orbital basis will be briefly
summarized before moving to specifics for UHF and
restricted Hartree–Fock wavefunctions.

3.8 Summary of the one-particle gradient

The one-particle density matrix terms for the MP2 gra-
dient in the spin-orbital basis are summarized here.

MP2 density correction terms

KJ ¼ core� core

P ð2ÞKJ ¼ 0 ð71Þ

Ki ¼ core� act

P ð2ÞKi ¼ P 2ð Þ
iK ¼

1

2 ei � eKð Þ
Xact

j

Xvact

ab

T ab
ij Kaj jbjð Þ ð72Þ

ij ¼ act� act

P 2ð Þ
ij ¼ �

1

2

Xact

k

Xvact

ab

T ab
ik T ab

jk ð73Þ

ab ¼ vact� vact

P 2ð Þ
ab ¼

1

2

Xact

ij

Xvact

c

T ac
ij T bc

ij ð74Þ
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Ca ¼ vf� vact

P 2ð Þ
Ca ¼ P 2ð Þ

aC ¼
1

2 ea � eCð Þ
Xact

ij

Xvact

b

T ab
ij iCj jbjð Þ ð75Þ

ai ¼ vall� occ

P 2ð Þ
ai ¼ Zai ð76Þ

MP2 energy-weighted density correction terms

[I] terms:

ij ¼ act� occ

W 2ð Þ
ij I½ � ¼ � 1

2

Xact

k

Xvact

ab

T ab
ik jaj kbjð Þ ð77Þ

ab ¼ vact� vall

W 2ð Þ
ab I½ � ¼ � 1

2

Xact

ij

Xvact

c

T ac
ij ibj jcjð Þ ð78Þ

ai ¼ vact� occ

W 2ð Þ
ai I½ � ¼ �

Xact

jk

Xvact

b

T ab
jk ijj bkjð Þ ð79Þ

[II] terms:

ij ¼ act� occ

W 2ð Þ
ij II½ � ¼ � 1

2
P 2ð Þ

ij ei þ ej
� �

ð80Þ

ab ¼ vact� vall

W 2ð Þ
ab II½ � ¼ � 1

2
P 2ð Þ

ab ea þ ebð Þ ð81Þ

ai ¼ vall� occ

W 2ð Þ
ai II½ � ¼ �P 2ð Þ

ai ei ð82Þ

[III] terms:

ij ¼ occ� occ

W 2ð Þ
ij III½ � ¼ � 1

2

Xall

pq

P 2ð Þ
pq Apqji ð83Þ

4 Derivation of the MP2 gradient equation
in the unrestricted basis

In this section, the results from the spin-orbital
basis derivation in Sect. 3 are specialized to the
unrestricted basis. The one-particle density matrices,
Lagrangian, CPHF equations, and two-particle density
matrices in the unrestricted basis are considered. Finally,
the one- and two- particle gradients are summarized.

4.1 One-particle density matrices

The UMP2 gradient equations are derived straightfor-
wardly from the spin-orbital results. The subspace of
spin orbitals must be divided into two subspaces: one
with a spatial orbitals and a spin and one with b spatial
orbitals and b spin:

Xsubspace

p

¼
Xsubspacea

pa

þ
Xsubspaceb

pb

: ð84Þ

The active–active density matrix P 2ð Þ
ij may be divided

into four parts:

P ð2Þij ¼ P ð2Þiaja þ P ð2Þiajb þ P ð2Þibja þ P ð2Þibjb : ð85Þ

The ‘‘mixed’’ densities P 2ð Þ
iajb and P 2ð Þ

ibja are zero, so this
leaves an (aa) density and a (bb) density. These will be
the same if a and b are exchanged, so the (aa) density
will be considered in more detail. Dividing the subspaces
yields

P ð2Þiaja ¼ �
1

2

Xact

k

Xvact

ab

T ab
iakT ab

jak ¼�
1

2

Xacta

ka

þ
Xactb

kb

 !

�
Xvacta

aa

þ
Xvactb

ab

 !
Xvacta

ba

þ
Xvactb

bb

 !
T ab

iakT ab
jak

¼�1
2

Xacta

ka

Xvacta

aa

Xvacta

ba

T aaba

iaka T aaba

jaka þ
Xactb

kb

Xvacta

aa

Xvacta

ba

T aaba

iakb T aaba

jakb

"

þ
Xacta

ka

Xvactb

ab

Xvacta

ba

T abba

iaka T abba

jaka þ
Xacta

ka

Xvacta

aa

Xvactb

bb

T aabb

iaka T aabb

jaka

þ
Xactb

kb

Xvactb

ab

Xvacta

ba

T abba

iakb T abba

jakb þ
Xactb

kb

Xvacta

aa

Xvactb

bb

T aabb

iakb T aabb

jakb

þ
Xacta

ka

Xvactb

ab

Xvactb

bb

T abbb

iaka T abbb

jaka þ
Xactb

kb

Xvactb

ab

Xvactb

bb

T abbb

iakb T abbb

jakb

#

ð86Þ

Terms 2, 3, 4, and 8 in Eq. (86) contain an odd
number of b spins, so the spin functions will integrate to
zero. The spin functions in term 7 in Eq. (86) also
integrate to zero. This leaves three terms. Substitution of
the form of the amplitude (Eq. 2) gives

P 2ð Þ
iaja ¼ �

1

2


Xacta

ka

Xvacta

aa

Xvacta

ba

iaaa kabajð Þ � iaba kaaajð Þ½ �
Daaba

iaka

� jaaa kabajð Þ � jaba kaaajð Þ½ �
Daaba

jaka

þ
Xactb

kb

Xvactb

ab

Xvacta

ba

� iaba kbab
��� �� �

Dabba

iakb

� jaba kbab
��� �� �

Dabba

jakb

þ
Xactb

kb

Xvacta

aa

Xvactb

bb

iaaa kbbb
��� �� �

Daabb

iakb

jaaa kbbb
��� �� �

Daabb

jakb

)
: ð87Þ
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The last two terms are the same if indices a and b are
interchanged. The first term may also be simplified by
expanding the equation and interchanging indices a and
b in appropriate terms, yielding

P 2ð Þ
iaja ¼�

Xacta

ka

Xvacta

aa

Xvacta

ba

iaaa kabajð Þ � iaba kaaajð Þ½ �
Daaba

iaka

jaaa kabajð Þ
Daaba

jaka

�
Xactb

kb

Xvacta

aa

Xvactb

bb

iaaa kbbb
��� �� �

Daabb

iakb

jaaa kbbb
��� �� �

Daabb

jakb

: ð88Þ

The (bb) density matrices will not be considered in
detail since they may be determined simply by inter-
changing a and b in the appropriate (aa) density matrix.
For example, the corresponding active–active (bb) den-
sity matrix becomes

P 2ð Þ
ibjb¼�

Xactb

kb

Xvactb

ab

Xvactb

bb

ibab kbbb
��� �

� ibbb kbab
��� �� �

Dabbb

ibkb

jbab kbbb
��� �

Dabbb

jbkb

�
Xacta

ka

Xvactb

ab

Xvacta

ba

ibab kabaj
� �� �

Dabba

ibka

jbab kabaj
� �� �

Dabba

jbka

: ð89Þ

The last of the one-particle density matrices that de-
serves mention is the third term in the energy-weighted
density matrix. The (aa) term is transformed as

W 2ð Þ
iaja III½ � ¼�1

2

Xall

pq

P 2ð Þ
pq Apqjaia

¼�1
2

Xalla

paqa

P 2ð Þ
paqaApaqajaia �

1

2

Xallb

pbqb

P 2ð Þ
pbqbApbqbjaia ; ð90Þ

where it is again recognized that the mixed densities P 2ð Þ
paqb

and P 2ð Þ
pbqa are zero. Four types of the Apqrs must be

considered:

Apaqarasa¼2 paqa rasajð Þ� para qasajð Þ� pasa qarajð Þ ; ð91Þ

Apaqarbsb ¼ 2 paqa rbsb
��� �

; ð92Þ

Apbqbrasa ¼ 2 pbqb rasaj
� �

; ð93Þ

Apbqbrbsb ¼ 2 pbqb rbsb
��� �

� pbrb qbsb
��� �

� pbsb qbrb
��� �

:

ð94Þ

Substitution of Eqs. (91) and (93) into Eq. (90) yields

W 2ð Þ
iaja III½ � ¼ � 1

2

Xalla

paqa

P 2ð Þ
paqa

	
2ðpaqajjaiaÞ � ðpajajqaiaÞ

� ðpaiajqajaÞ


� 1

2

Xallb

pbqb

P 2ð Þ
pbqb 2 pbqb jaiaj

� �� �
:

ð95Þ

Owing to equivalent summations over p and q, the
matrix contribution may be written as

W 2ð Þ
iaja III½ � ¼ �

Xalla

paqa

P 2ð Þ
paqa paqa iajajð Þ � paia qajajð Þ½ �

�
Xallb

pbqb

P 2ð Þ
pbqb pbqb iajaj
� �

: ð96Þ

4.2 Lagrangian

The virtual–occupied response term must be considered
next. This term (Eq. 56) has both (aa) and (bb) con-
tributions:

Xocc

i

Xvall

a

Ux
aiLai ¼

Xocca

ia

Xvalla

aa

Ux
aaiaLaaiaþ

Xoccb

ib

Xvallb

ab

Ux
abibLabib :

ð97Þ

The next task is to find the form of the (aa) La-
grangian. The first and second terms in the Lagrangian
in the spin-orbital basis (Eq. 57) transform as in
Eq. (90). The third and fourth terms may be transformed
with the techniques used for the other density matrices.
This yields the following form for the (aa) Lagrangian:

Laaia¼
Xocca

jaka

P 2ð Þ
jakaAaaiajakaþ

Xoccb

jbkb

P 2ð Þ
jbkbAaaiajbkb

þ
Xvalla

baca

P 2ð Þ
bacaAaaiabacaþ

Xvallb

bbcb

P 2ð Þ
bbcbAaaiabbcb

�2Naa

Xacta

jaka

Xvacta

ba

jaaa kabajð Þ� jaba kaaajð Þ
Daaba

jaka

ðiajajbakaÞ

�2Naa

Xacta

ja

Xactb

kb

Xvactb

bb

jaaa kbbb
��� �

Daabb

jakb

iaja bbkb
��� �

þ2Nia
Xacta

ja

Xvacta

baca

iaba jacajð Þ� iaca jabajð Þ
Dbaca

iaja

aaba jacajð Þ

þ2Nia
Xactb

jb

Xvacta

ba

Xvactb

cb

iaba jbcb
��� �

Dbacb

iajb

aaba jbcb
��� �

: ð98Þ

Again, the (bb) Lagrangian will be related to the (aa)
Lagrangian by an interchange of all a and b spin terms.

4.3 CPHF equations

Equation (67)maybeexpressed in theunrestrictedbasisas

Xvalla

ba

Xocca

ja

Aaaiabaja þ daabadiaja ea
b � ea

j

� �n o
P 2ð Þ

baja

þ
Xvallb

bb

Xoccb

jb

Aaaiabbjb þ daabbdiajb eb
b � eb

j

� �n o
P 2ð Þ

bbjb ¼ �Laaia ;

ð99Þ
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Xvalla

ba

Xocca

ja

Aabibbaja þdabbadibja ea
b� ea

j

� �n o
P 2ð Þ

baja

þ
Xvallb

bb

Xoccb

jb

Aabibbbjb þdabbbdibjb eb
b� eb

j

� �n o
P 2ð Þ

bbjb ¼�Labib :

ð100Þ

The Kronecker ds of mixed spins are zero, leading to

Xvalla

ba

Xocca

ja

Aaaiabaja þ dabdij ea
b � ea

j

� �n o
P 2ð Þ

baja

þ
Xvallb

bb

Xoccb

jb

Aaaiabbjb

� �
P 2ð Þ

bbjb ¼ �Laaia ; ð101Þ

Xvallb

bb

Xoccb

jb

Aabibbbjb þ dabdij eb
b � eb

j

� �n o
P 2ð Þ

bbjb

þ
Xvalla

ba

Xocca

ja

Aabibbaja

� �
P 2ð Þ

baja ¼ �Labib : ð102Þ

Equations (101) and (102) may be solved for P 2ð Þ
baja and

P 2ð Þ
bbjb . The contribution to the gradient expression comes

from the following equations:
X

aaia
Ux

aaiaLaaia ¼
X

aaia
Bx

aaiaP
2ð Þ

aaia ; ð103Þ

X

abib
Ux

abibLabib ¼
X

abib
Bx

abibP 2ð Þ
abib : ð104Þ

The form of the Bx
baja term may be determined in the

following manner:

Bx
paqa ¼ F xð Þ

paqa � S xð Þ
paqa ea

q �
1

2

Xocca

kala

S xð Þ
kalaApaqalaka

� 1

2

Xoccb

kblb

S xð Þ
kblbApaqalbkb ð105Þ

¼ F xð Þ
paqa � S xð Þ

paqa ea
q �

1

2

Xocca

kala

S xð Þ
kala ½2 paqajkalað Þ � pakajqalað Þ

� ðpala qakaj Þ�� 1

2

Xoccb

kblb

S xð Þ
kblb 2 paqa kblb

��� �� �
: ð106Þ

Owing to equivalent summation over k and l,
Eq. (106) may be simplified to

Bx
paqa ¼ F xð Þ

paqa �S xð Þ
paqa ea

q�
Xocc

kala

S xð Þ
kala paqa kalajð Þ� paka qalajð Þ½ �

�
Xoccb

kblb

S xð Þ
kblb paqa kblb

��� �
; ð107Þ

where

F xð Þ
paqa ¼ H xð Þ

paqa þ
Xocca

ka

paqa kakajð Þ xð Þ � paka qakajð Þ xð Þ
h i

þ
Xoccb

kb

paqa kbkb
��� � xð Þh i

: ð108Þ

4.4 Two-particle density matrices

The nonseparable density term in the spin-orbital basis
(term 11 in Eq. 70) is

1

2

Xact

ij

Xvact

ab

ia jbkð Þ xð ÞT ab
ij : ð109Þ

Summing over spin gives

1

2

(
Xacta

iaja

Xvacta

aaba

iaaa jabajð Þ � iaba jaaajð Þ½ �
ea

i þ ea
j � ea

a � ea
b

�
h�

iaaajjaba
� xð Þ
�
�

iabajjaaa
� xð Þi

þ
Xacta

ia

Xactb

jb

Xvacta

aa

Xvactb

bb

iaaa jbbb
��� �

iaaa jbbb
��� �ðxÞ

ea
i þ eb

j � ea
a � eb

b

þ
Xacta

ia

Xactb

jb

Xvactb

ab

Xvacta

ba

iaba jbab
��� �

iaba jbab
��� � xð Þ

ea
i þ eb

j � eb
a � ea

b

þ
Xactb

ib

Xacta

ja

Xvacta

aa

Xvactb

bb

jaaa ibbb
��� �

jaaa ibbb
��� �ðxÞ

eb
i þ ea

j � ea
a � eb

b

þ
Xactb

ib

Xacta

ja

Xvactb

ab

Xvacta

ba

jaba ibab
��� �

jaba ibab
��� � xð Þ

eb
i þ ea

j � eb
a � ea

b

þ
Xactb

ibjb

Xvactb

abbb

ibabjjbbb
� �

� ibbbjjbab
� �� �

eb
i þ eb

j � eb
a � eb

b

� ibab jbbb
��� � xð Þ � ibbb jbab

��� � xð Þh i)
: ð110Þ

Terms 2, 3, 4, and 5 in Eq. (110) are the same if
indices (i,j) or (a,b) are interchanged. Terms 1 and 6
may also be simplified by expanding the terms and
interchanging appropriate indices. This yields

Xacta

iaja

Xvacta

aaba

iaaa jabajð Þ� iaba jaaajð Þ½ �
ea

i þea
j�ea

a�ea
b

iaaa jabajð Þ xð Þ

þ2
Xacta

ia

Xactb

jb

Xvacta

aa

Xvactb

bb

iaaa jbbb
��� �

iaaa jbbb
��� � xð Þ

ea
i þeb

j �ea
a�eb

b

þ
Xactb

ibjb

Xvactb

abbb

ibab jbbb
��� �

� ibbb jbab
��� �� �

eb
i þeb

j �eb
a�eb

b

ibab jbbb
��� � xð Þ

:

ð111Þ

At this point, AO ERI derivatives may be substituted
for the MO ERI derivatives using Eq. (6), which gives
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X

lmkr

Xacta

iaja

Xvacta

aaba

iaaa jabajð Þ � iaba jaaajð Þ½ �
ea

i þ ea
j � ea

a � ea
b

Ca
liC

a
maCa

kjC
a
rb

 

þ 2
Xacta

ia

Xactb

jb

Xvacta

aa

Xvactb

bb

iaaa jbbb
��� �

ea
i þ eb

j � ea
a � eb

b

Ca
liC

a
maCb

kjC
b
rb

þ
Xactb

ibjb

Xvactb

abbb

ibab jbbb
��� �

� ibbb jbab
��� �� �

eb
i þ eb

j � eb
a � eb

b

Cb
liC

b
maCb

kjC
b
rb

1

A

� lm krjð Þx : ð112Þ

The quantity in large parentheses in Eq. (112) may be
identified as the nonseparable two-particle density
matrix CNS

lmkr, which gives a term of the form

X

lmkr

CNS
lmkr lm krjð Þx : ð113Þ

Finally, the separable two-particle density comes
from terms 1, 2, and 3 in Eq. (70), which have the form

Xall

pq

P 2ð Þ
pq

Xocc

k

ij kkjð Þ xð Þ � ik jkjð Þ xð Þ
h i

: ð114Þ

Summation over spin yields

Xalla

paqa

P 2ð Þ
paqa

(
Xocca

ka

paqa kakajð Þ xð Þ� paka qakajð Þ xð Þ
h i

þ
Xoccb

kb

paqa kbkb
��� � xð Þ

)

þ
Xallb

pbqb

P 2ð Þ
pbqb

(
Xoccb

kb

pbqb kbkb
��� �ðxÞh

� pbkb qbkb
��� � xð Þiþ

Xocca

ka

pbqb kakaj
� � xð Þ

)
: ð115Þ

Expressing Eq. (115) in terms of AO derivatives
(Eq. 6) gives

Xalla

paqa

P 2ð Þ
paqa

X

lmkr

Xocca

ka

Ca
lpCa

mqCa
kkCa

rk�Ca
lpCa

mkCa
kqCa

rk

� �
lm krjð Þx

þ
Xalla

paqa

P 2ð Þ
paqa

X

lmkr

Xoccb

kb

Ca
lpCa

mqCb
kkCb

rk lm krjð Þx

þ
Xallb

pbqb

P 2ð Þ
pbqb

X

lmkr

Xoccb

kb

Cb
lpCb

mqCb
kkCb

rk�Cb
lpCb

mkCb
kqCb

rk

� �
lm krjð Þx

þ
Xallb

pbqb

P 2ð Þ
pbqb

X

lmkr

Xocca

ka

Cb
lpCb

mqCa
kkCa

rk lm krjð Þx : ð116Þ

Factoring Eq. (116) yields

X

lmkr

" 
Xocca

ka

Ca
kkCa

rk

! 
Xalla

paqa

P ð2ÞpaqaCa
lpCa

mq

!

�
 
Xocca

ka

Ca
mkCa

rk

! 
Xalla

paqa

P ð2ÞpaqaCa
lpCa

kq

!#
ðlmjkrÞx

þ
X

lmkr

" 
Xoccb

kb

Cb
kkCb

rk

! 
Xalla

paqa

P ð2ÞpaqaCa
lpCa

mq

!#
ðlmjkrÞx

þ
X

lmkr

" 
Xoccb

kb

Cb
kkCb

rk

! 
Xallb

pbqb

P ð2ÞpbqbCb
lpCb

mq

!

�
 
Xoccb

kb

Cb
mkCb

rk

! 
Xallb

pbqb

P ð2ÞpbqbCb
lpCb

kq

!#
ðlmjkrÞx

þ
X

lmkr

" 
Xocca

ka

Ca
kkCa

rk

! 
Xallb

pbqb

P ð2ÞpbqbCb
lpCb

mq

!#
ðlmjkrÞx : ð117Þ

Identification of appropriate SCF density matrices
such as

P aSCF
lm ¼

Xocca

ka

Ca
lkCa

mk ð118Þ

and transformedMP2 correction density matrices such as

P 2ð Þ
lm aað Þ ¼

Xalla

paqa

Ca
lpCa

mqP 2ð Þ
paqa ð119Þ

allows Eq. (117) to be written as

X

lmkr

P 2ð Þ
lm ðaaÞP aSCF

kr �P 2ð Þ
lk aað ÞP aSCF

mr þP 2ð Þ
lm aað ÞPbSCF

kr

h

þP 2ð Þ
lm ðbbÞP bSCF

kr �P 2ð Þ
lk bbð ÞPbSCF

mr þP 2ð Þ
lm bbð ÞP aSCF

kr

i

� lm krjð Þx: ð120Þ

The quantity in brackets in Eq. (120) can be identi-
fied as the separable two-particle density matrix CS

lmkr,
yielding a term of the form

X

lmkr

CS
lmkr lm krjð Þx : ð121Þ

4.5 One-particle gradient summary

The (aa) terms of the one-particle density matrices are
summarized here. All (bb) one-particle gradient terms
are direct analogs of the corresponding (aa) terms.

MP2 density correction terms (aa)

KJ ¼ core� core

P 2ð Þ
KaJa ¼ 0

ð122Þ

Ki¼core�act P ð2ÞKaia¼P ð2ÞiaKa

¼ 1

ðea
i �ea

KÞ
Xacta

ja

Xvacta

aaba



½ðiaaajjabaÞ�ðiabajjaaaÞ�

Daaba

iaja

ðKaaajjabaÞ

þ
Xactb

jb

Xvacta

aa

Xvactb

bb

ðiaaajjbbbÞ
Daabb

iajb

ðKaaajjbbbÞ
�

ð123Þ
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ij ¼ act� act

P ð2Þiaja ¼ �
Xacta

ka

Xvacta

aa

Xvacta

ba

½ðiaaajkabaÞ � ðiabajkaaaÞ�
Daaba

iaka

ðjaaajkabaÞ
Daaba

jaka

�
Xactb

kb

Xvacta

aa

Xvactb

bb

½ðiaaajkbbbÞ�
Daabb

iakb

½ðjaaajkbbbÞ�
Daabb

jakb

ð124Þ

ab ¼ vact� vact

P ð2Þaaba ¼
Xacta

ia

Xacta

ja

Xvacta

ca

½ðiaaajjacaÞ � ðiacajjaaaÞ�
Daaca

iaja

ðiabajjacaÞ
Dbaca

iaja

þ
Xacta

ia

Xactb

jb

Xvactb

cb

ðiaaajjbcbÞ
Daacb

iajb

ðiabajjbcbÞ
Dbacb

iajb

ð125Þ

Ca¼vf�vact P ð2ÞCaaa¼P ð2ÞaaCa

¼ 1

ðea
a�ea

CÞ

(
Xacta

ia

Xacta

ja

Xvacta

ba

½ðiaaajjabaÞ�ðiabajjaaaÞ�
Daaba

iaja

ðiaCajjabaÞ

þ
Xacta

ia

Xactb

jb

Xvactb

bb

ðiaaajjbbbÞ
Daabb

iajb

ðiaCajjbbbÞ
)

ð126Þ

ai ¼ vall� occ

P 2ð Þ
aaia ¼ Zaaia

ð127Þ

MP2 energy-weighted density correction terms (aa)

[I] terms:

ij ¼ act� occ W ð2Þ
iaja ½I �

¼ �
Xacta

ka

Xvalla

aaba

ðiaaajkabaÞ � ðiabajkaaaÞ
Daaba

iaka

ðjaaajkabaÞ

�
Xactb

kb

Xvalla

aa

Xvallb

ba

ðiaaajkbbbÞ
Daabb

iakb

ðjaaajkbbbÞ ð128Þ

ab ¼ vact� vall

W 2ð Þ
aaba I½ � ¼ �

Xacta

iaja

Xvacta

ca

iaaa jacajð Þ � iaca jaaajð Þ
Daaca

iaja

iaba jacajð Þ

�
Xacta

ia

Xactb

jb

Xvactb

cb

iaaa jbcb
��� �

Daacb

iajb

iaba jbcb
��� �

ð129Þ

ai ¼ vact� occ

W 2ð Þ
aaia I½ � ¼ �2

Xacta

jaka

Xvacta

ba

jaaa kabajð Þ � jaba kaaajð Þ
Daaba

jaka

iaja bakajð Þ

� 2
Xacta

ja

Xactb

kb

Xvactb

bb

jaaa kbbb
��� �

Daabb

jakb

iaja bbkb
��� �

ð130Þ

[II] terms:

ij ¼ act� occ W 2ð Þ
iaja II½ � ¼ � 1

2
P 2ð Þ

iaja ea
i þ ea

j

� �
ð131Þ

ab ¼ vact� vall W 2ð Þ
aaba II½ � ¼ � 1

2
P 2ð Þ

aaba ea
a þ ea

b

� �
ð132Þ

ai ¼ vall� occ W 2ð Þ
aaia II½ � ¼ �P 2ð Þ

aaia e
a
i ð133Þ

[III] terms:

ij ¼ occ� occ

W ð2Þ
iaja ½III � ¼ �

Xalla

paqa

P ð2Þpaqa ½ðpaqajiajaÞ � ðpaiajqajaÞ�

�
Xallb

pbqb

P ð2ÞpbqbðpbqbjiajaÞ ð134Þ

4.6 Two-particle gradient summary

The two-electron density can be expressed as a sum of
the nonseparable two-particle density and the separable
two-particle density:

C 2ð Þ
lmkr ¼ CNS

lmkr þ CS
lmkr: ð135Þ

Nonseparable density:

CNS
lmkr ¼

Xacta

iaja

Xvacta

aaba

½ðiaaajjabaÞ � ðiabajjaaaÞ�
ea

i þ ea
j � ea

a � ea
b

Ca
liC

a
maCa

kjC
a
rb

þ 2
Xacta

ia

Xactb

jb

Xvacta

aa

Xvactb

bb

ðiaaajjbbbÞ
ea

i þ eb
j � ea

a � eb
b

Ca
liC

a
maCb

kjC
b
rb

þ
Xactb

ibjb

Xvactb

abbb

½ðibabjjbbbÞ � ðibbbjjbabÞ�
eb

i þ eb
j � eb

a � eb
b

Cb
liC

b
maCb

kjC
b
rb

ð136Þ

Separable density

CS
lmkr ¼ P 2ð Þ

lm aað ÞP aSCF
kr � P 2ð Þ

lk aað ÞP aSCF
mr

þ P 2ð Þ
lm aað ÞP bSCF

kr þP 2ð Þ
lm bbð ÞPbSCF

kr � P 2ð Þ
lk bbð ÞPbSCF

mr

þ P 2ð Þ
lm bbð ÞP aSCF

kr : ð137Þ

5 Derivation of the closed-shell MP2 gradient equation

If only the closed-shell gradient equations are desired,
the gradient expression may be derived directly from the
closed-shell MP2 equation [14, 15, 20]. However, when
the unrestricted gradient expression has already been
derived, the simplest pedagogical derivation for the
closed-shell expression comes from simplifying the un-
restricted expression, as shown in this section. Several
formulations have been presented to improve the
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computational efficiency of the closed-shell frozen-orbi-
tal MP2 gradient algorithm [14, 20], and we note that the
derived expression presented here is not the most effi-
cient to date; however, the approach presented is more
than adequate for the purpose of demonstration of
dependent-pair and gradient theory techniques.

For the closed-shell system, all a and b spatial orbitals
are equal and all a and b orbital energies are equal. Thus,

paj i ¼ pb
�� �

ð138Þ

and

ea
p ¼ eb

p : ð139Þ

5.1 One-particle density matrices

The one-particle density matrices may be derived from
their unrestricted counterparts. The closed-shell density
correction matrix PCS 2ð Þ

ij is the sum of the aa and bb
unrestricted density matrices (from Eq. 85). So, the form
of the density matrices in the closed-shell basis can be
determined by setting a=b in the unrestricted matrix
equations. Thus,

PCS 2ð Þ
pq ¼ P 2ð Þ

paqa þ P 2ð Þ
pbqb ¼ 2P 2ð Þ

paqa ð140Þ

and

W CS 2ð Þ
pq ¼ W 2ð Þ

paqa þ W 2ð Þ
pbqb ¼ 2W 2ð Þ

paqa : ð141Þ

The active–active density matrix can be evaluated
using a=b:

PCSð2Þ
ij ¼ 2P ð2Þiaja ¼

� 2
Xacta

ka

Xvacta

aa

Xvacta

ba

½ðiaaajkabaÞ � ðiabajkaaaÞ�
Daaba

iaka

ðjaaajkabaÞ
Daaba

jaka

� 2
Xacta

ka

Xvacta

aa

Xvacta

ba

½ðiaaajkabaÞ�
Daaba

iaka

½ðjaaajkabaÞ�
Daaba

jaka

ð142Þ

The second term on the right-hand side of Eq. (142)
may be combined with the first part of the first term.
Since a closed-shell system contains only one type of
spatial orbital and orbital energy, the a designation on
MOs and orbital energies will be dropped. This notation
should not be confused with the spin-orbital notation
(which looks the same). With these simplifications, the
matrix may now be written as

PCS 2ð Þ
ij ¼ �2

Xact

k

Xvact

a

Xvact

b

2 ia kbjð Þ � ib kajð Þ½ �
Dab

ik

ja kbjð Þ
Dab

jk

:

ð143Þ

A closed-shell amplitude may be defined as

T ab
ik ¼

2 ia kbjð Þ � ib kajð Þ½ �
Dab

ik

: ð144Þ

Thus, the active–active density matrix contribution
may be written as

PCS 2ð Þ
ij ¼ �2

Xact

k

Xvact

a

Xvact

b

T ab
ik

ja kbjð Þ
Dab

jk

: ð145Þ

Next, the simplification of the A terms must be con-
sidered. With a=b, Eqs. (91, 92, 93, 94) become

Apaqarasa ¼ 2 pq rsjð Þ � pr qsjð Þ � ps qrjð Þ ; ð146Þ

Apaqarbsb ¼ 2 pq rsjð Þ ; ð147Þ

Apbqbrasa ¼ 2 pq rsjð Þ ; ð148Þ

Apbqbrbsb ¼ 2 pq rsjð Þ � pr qsjð Þ � ps qrjð Þ : ð149Þ

Now, the closed-shell energy-weighted matrix
contribution, W CS 2ð Þ

ij III½ �, may be written as

W cs 2ð Þ
ij III½ � ¼ 2W 2ð Þ

iaja III½ � ð150Þ

¼�2
Xalla

paqa

P ð2Þpaqa ½ðpaqajiajaÞ�ðpaiajqajaÞ�

�2
Xalla

paqa

P ð2ÞpaqaðpaqajiajaÞ ð151Þ

¼ �2
Xalla

paqa

P 2ð Þ
paqa 2 pq ijjð Þ � pi qjjð Þ½ � ð152Þ

¼ �
Xall

pq

PCS 2ð Þ
pq 2 pq ijjð Þ � pi qjjð Þ½ � : ð153Þ

These techniques may be used to simplify the other
closed-shell one-particle density matrix and one-particle
energy-weighted density matrix blocks, which are sum-
marized in Sect. 5.5.

5.2 Lagrangian

The closed-shell Lagrangian is

LCS 2ð Þ
ai ¼ 2L 2ð Þ

aaia ð154Þ

¼2
Xocca

jaka

P 2ð Þ
jaka 2 ai jkjð Þ� aj ikjð Þ� ak ijjð Þ½ �þ2

Xocca

jaka

P 2ð Þ
jaka 2 ai jkjð Þ½ �

þ2
Xvalla

baca

P 2ð Þ
baca 2 ai bcjð Þ� ab icjð Þ� ac ibjð Þ½ �

þ2
Xvalla

baca

P 2ð Þ
baca 2 ai bcjð Þ½ ��4Na

Xact

jk

Xvact

b

ja kbjð Þ� jb kajð Þ½ �
Dab

jk

ij bkjð Þ

�4Na

Xact

jk

Xvact

b

ja kbjð Þ
Dab

jk

ij bkjð Þ
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þ4Ni

Xact

j

Xvact

bc

ib jcjð Þ� ic jbjð Þ½ �
Dbc

ij
ab jcjð Þ

þ4Ni

Xact

j

Xvact

bc

ib jcjð Þ
Dbc

ij
ab jcjð Þ ð155Þ

¼ 2
Xocca

jaka

P ð2Þjaka ½4ðaijjkÞ � ðajjikÞ � ðakjijÞ�

þ 2
Xvalla

baca

P ð2Þbaca ½4ðaijbcÞ � ðabjicÞ � ðacjibÞ�

� 4Na

Xact

jk

Xvact

b

½2ðjajkbÞ � ðjbjkaÞ�
Dab

jk

ðijjbkÞ

þ 4Ni

Xact

j

Xvact

bc

½2ðibjjcÞ � ðicjjbÞ�
Dbc

ij
ðabjjcÞ ð156Þ

¼
Xocc

jk

PCSð2Þ
jk ½4ðaijjkÞ � ðajjikÞ � ðakjijÞ�

þ
Xvall

bc

PCSð2Þ
bc ½4ðaijbcÞ � ðabjicÞ � ðacjibÞ�

� 4Na

Xact

jk

Xvact

b

½2ðjajkbÞ � ðjbjkaÞ�
Dab

jk

ðijjbkÞ

þ 4Ni

Xact

j

Xvact

bc

½2ðibjjcÞ � ðicjjbÞ�
Dbc

ij
ðabjjcÞ : ð157Þ

Now, if the closed-shell A term is defined as

ACS
pqrs ¼ 4 pq rsjð Þ � pr qsjð Þ � ps qrjð Þ; ð158Þ

then the closed-shell Lagrangian can be written more
simply as

LCSð2Þ
ai ¼

Xocc

jk

P CSð2Þ
jk ACS

aijk þ
Xvall

bc

P CSð2Þ
bc ACS

aibc

� 4Na

Xact

jk

Xvact

b

T ab
jk ðijjbkÞþ 4Ni

Xact

j

Xvact

bc

T bc
ij ðabjjcÞ :

ð159Þ
5.3 CPHF equations

For closed-shell systems, Eq. (101) becomes

� Laaia ¼
Xvalla

ba

Xocca

ja

f2½ðaijbjÞ � ðabjijÞ � ðajjbiÞ�

þ dabdijðea
b � ea

j ÞgP
ð2Þ
baja þ

Xvalla

ba

Xocca

ja

½2ðaijbjÞ�P ð2Þbaja

ð160Þ

¼
Xvalla

ba

Xocca

ja

4 ai bjjð Þ� ab ijjð Þ� aj bijð Þ½ �þdabdij eb�ej
� �� �

P 2ð Þ
baja :

ð161Þ

Since the off-diagonal closed-shell density is

PCS 2ð Þ
bj ¼ 2P 2ð Þ

baja ; ð162Þ

substitution of the closed-shell A term (Eq. 158), density
matrix (Eq. 162), and Lagrangian (Eq. 157) in Eq. (161)
yields

�LCS
ai ¼

Xvall

b

Xocc

j

ACS
aibj þ dabdij eb � ej

� �h i
PCS 2ð Þ

bj : ð163Þ

Equation (163) represents the linear equations
that must be solved to find the virtual-occupied block
of the density. The contribution to the gradient
equation is

X

ai

Bx CSð Þ
ai PCS 2ð Þ

ai : ð164Þ

The closed-shell equations for Bx CSð Þ
pq may be written

BxðCSÞ
paqa ¼ F ðxÞpaqa � SðxÞpaqa ea

q �
Xocca

kala

SðxÞkala ½ðpaqajkalaÞ

�ðpakajqalaÞ� �
Xocca

kala

SðxÞkalaðpaqajkalaÞ ; ð165Þ

Bx CSð Þ
pq ¼ F xð Þ

pq � S xð Þ
pq eq

�
Xocc

kl

S xð Þ
kl 2 pq kljð Þ � pk qljð Þ½ � ; ð166Þ

where

F ðxÞpaqa ¼ H ðxÞpaqa þ
Xocca

ka

½ðpaqajkakaÞðxÞ � ðpakajqakaÞðxÞ�

þ
Xocca

ka

ðpaqajkakaÞðxÞ ; ð167Þ

F xð Þ
pq ¼ H xð Þ

pq þ
Xocc

k

2 pq kkjð Þ xð Þ � pk qkjð Þ xð Þ
h i

: ð168Þ

5.4 Two-particle density matrices

Next, the closed-shell versions of the nonseparable two-
particle density and the separable two-particle density
must be derived from the unrestricted versions. If a=b is
substituted in the nonseparable density,
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CNS
lmkr ¼

Xact

ij

Xvact

ab

½ðiajjbÞ � ðibjjaÞ�
ei þ ej � ea � eb

CliCmaCkjCrb

þ 2
Xact

ij

Xvact

ab

ðiajjbÞ
ei þ ej � ea � eb

CliCmaCkjCrb

þ
Xact

ij

Xvact

ab

½ðiajjbÞ � ðibjjaÞ�
ei þ ej � ea � eb

CliCmaCkjCrb ð169Þ

Since the first and third terms are the same and the
second term is equal to the first part of the first term,
Eq. (169) can be simplified to

CNS
lmkr ¼ 2

Xact

ij

Xvact

ab

2 ia jbjð Þ� ib jajð Þ½ �
eiþ ej� ea� eb

CliCmaCkjCrb : ð170Þ

Substitution of the form of the closed-shell amplitude
(Eq. 144) yields

CNS
lmkr ¼ 2

Xact

ij

Xvact

ab

T ab
ij CliCmaCkjCrb ; ð171Þ

which corresponds to a back-transformation of the
closed-shell MP2 amplitudes.

If a=b is substituted in the separable density, this
term becomes

CS
lmkr ¼ P ð2Þlm ðaaÞP aSCF

kr � P ð2Þlk ðaaÞP aSCF
mr þ P ð2Þlm ðaaÞP aSCF

kr

þ P ð2Þlm ðaaÞP aSCF
kr � P ð2Þlk ðaaÞP aSCF

mr þ P ð2Þlm ðaaÞP aSCF
kr ;

ð172Þ

CS
lmkr ¼ 4P 2ð Þ

lm aað ÞP aSCF
kr � 2P 2ð Þ

lk aað ÞP aSCF
mr : ð173Þ

Now, since PCS 2ð Þ
lm ¼ 2P 2ð Þ

lm aað Þ and P SCF
kr ¼ 2P aSCF

kr ,
Eq. (173) becomes

CS
lmkr ¼ PCS 2ð Þ

lm P SCF
kr � 1

2
PCS 2ð Þ

lk P SCF
mr : ð174Þ

5.5 One-particle gradient summary

The one-particle density matrices for the closed-shell
basis are summarized here.

MP2 density correction terms

KJ ¼ core� core

PCS 2ð Þ
KJ ¼ 0

ð175Þ

Ki ¼ core� act

PCS 2ð Þ
Ki ¼ PCS 2ð Þ

iK ¼ 2

ei � eKð Þ
Xact

j

Xvact

ab

T ab
ij Ka jbjð Þ

ð176Þ

ij ¼ act� act

PCS 2ð Þ
ij ¼ �2

Xact

k

Xvact

ab

T ab
ik ja kbjð Þ

.
Dab

jk ð177Þ

ab ¼ vact� vact

PCS 2ð Þ
ab ¼ 2

Xact

ij

Xvact

c

T ac
ij ib jcjð Þ

.
Dbc

ij ð178Þ

Ca¼vf�vact

PCS 2ð Þ
Ca ¼PCS 2ð Þ

aC ¼ 2

ea�eCð Þ
Xact

ij

Xvact

b

T ab
ij iC jbjð Þ

ð179Þ

ai ¼ vall� occ

PCS 2ð Þ
ai ¼ ZCS

ai

ð180Þ

MP2 energy-weighted density correction terms

[I] terms:

ij ¼ act� occ W CS 2ð Þ
ij I½ � ¼ �2

Xact

k

Xvact

ab

T ab
ik ja kbjð Þ ð181Þ

ab ¼ vact� vall W CS 2ð Þ
ab I½ �

¼ �2
Xact

ij

Xvact

c

T ac
ij ib jcjð Þ ð182Þ

ai ¼ vact� occ W CS 2ð Þ
ai I½ � ¼ �4

Xact

jk

Xvact

b

T ab
jk ij bkjð Þ

ð183Þ
[II] terms:

ij ¼ act� occ W CS 2ð Þ
ij II½ � ¼ � 1

2
PCS 2ð Þ

ij ei þ ej
� �

ð184Þ

ab ¼ vact� vall W CS 2ð Þ
ab II½ � ¼ � 1

2
PCS 2ð Þ

ab ea þ ebð Þ ð185Þ

ai ¼ vall� occ W CS 2ð Þ
ai II½ � ¼ �PCS 2ð Þ

ai ei ð186Þ

[III] terms:

ij¼occ�occ W CS 2ð Þ
ij III½ �¼�

Xall

pq

PCS 2ð Þ
pq 2 pq ijjð Þ� pi qjjð Þ½ �

ð187Þ

5.6 Two-particle gradient summary

The two-electron density can be expressed as a sum of
the nonseparable two-particle density and the separable
two-particle density:

C 2ð Þ
lmkr ¼ CNS

lmkr þ CS
lmkr: ð188Þ
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Nonseparable density:

CNS
lmkr ¼ 2

Xact

ij

Xvact

ab

T ab
ij CliCmaCkjCrb: ð189Þ

Separable density:

CS
lmkr ¼ PCS 2ð Þ

lm P SCF
kr � 1

2
PCS 2ð Þ

lk P SCF
mr : ð190Þ

6 Implementation considerations

A brief summary of the significant computational steps
is presented. Some of the important implementation
aspects are considered in more detail, including the
back-transformation, symmetrization, and contraction
of the one- and two-particle density matrices.

6.1 Computational procedure

An outline of the computational procedure used to
calculate MP2 gradients is presented here.

1. Follow the SCF procedure to obtain orbital en-
ergies, coefficients, and the PSCF, WSCF, and CSCF

matrices.

2. Transform ERIs from the AO to the MO basis (see
Sect. 7.1).

3. Determine contributions to the P(2), W(2), and L

matrices according to the relevant equations
(Sects. 4.2, 4.5, 5.2, 5.5).

4. Calculate the MP2 energy.

5. Form the last two terms in the Lagrangian in the
AO basis (Sect. 7.3).

6. Iteratively solve the CPHF equations in the AO
basis to determine Pai (Sects. 4.3, 5.3).

7. Calculate the contribution to W from the W[II]
terms (Sects. 4.5, 5.5).

8. Form W[III] in the AO basis (Sect. 7.3) and trans-
form to the MO basis.

9. Calculate the nonseparable contribution to C. (Sects.
4.6 and 5.6)

10. Back-transform the completed P(2) and W(2) ma-
trices to the AO basis and add to the SCF density
matrices to yield PMP2 and WMP2 (Sects. 6.2, 6.3).

11. Contract the PMP2 and WMP2 matrices with appro-
priate one-electron Hamiltonian and overlap deri-
vative integrals.

12. Complete C and contract with appropriate (lm|kr)x

integrals.

6.2 Back-transformation and symmetrization of density
matrices

The total one-particle energy gradient is obtained by first
back-transforming the complete MP2 density correction

P 2ð Þ
pq and energy-weighted density correction W 2ð Þ

pq to the

AO basis. Note that only the virtual–occupied contribu-
tions to P 2ð Þ

pq (Eq. 127 or Eq. 180) and W 2ð Þ
pq (Eqs. 130, 133

or Eqs. 183, 186) appear from this derivation. The cor-
responding occupied–virtual blocks are zero. Thus, sym-
metrization of P 2ð Þ

pq and W 2ð Þ
pq is customary prior to the

back-transformation. P 2ð Þ
pq must be symmetrized before

Eq. (134) or Eq. (187) can be applied.
For the closed-shell case, the back-transformation is

done as follows:

P 2ð Þ
lm ¼

Xall

pq

ClpCmqPCS 2ð Þ
pq ; ð191Þ

W 2ð Þ
lm ¼

Xall

pq

ClpCmqW CS 2ð Þ
pq : ð192Þ

For the unrestricted open-shell case, the back-trans-
formation is

P 2ð Þ
lm aað Þ ¼

Xalla

paqa

Ca
lpCa

mqP 2ð Þ
paqa ; ð193Þ

W 2ð Þ
lm aað Þ ¼

Xalla

paqa

Ca
lpCa

mqW 2ð Þ
paqa ; ð194Þ

with corresponding equations for the (bb) matrices.
The nonseparable and separable density matrix

corrections are already in the AO basis (Eqs. 136, 137
or Eqs. 189, 190). They must be symmetrized according
to the particular ERI permutational symmetries used
in a given algorithm.

6.3 Contraction of MP2 density matrices

The second-order corrections must be added to the
corresponding SCF densities. For the closed-shell case,
these equations are

PMP2
lm ¼ P SCF

lm þ PCS 2ð Þ
lm ; ð195Þ

W MP2
lm ¼ 2W SCF

lm þ W CS 2ð Þ
lm ; ð196Þ

where

P SCF
lm ¼ 2

Xocc

k

ClkCmk ; ð197Þ

W SCF
lm ¼

Xocc

k

ClkCmkek : ð198Þ

For the unrestricted open-shell case, these equations
are

PMP2
lm ¼ P aSCF

lm þ P bSCF
lm þ P 2ð Þ

lm aað Þ þ P 2ð Þ
lm bbð Þ ; ð199Þ

W MP2
lm ¼ W aSCF

lm þ W bSCF
lm þ W 2ð Þ

lm aað Þ þ W 2ð Þ
lm bbð Þ ;

ð200Þ
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where

P aSCF
lm ¼

Xocca

ka

Ca
lkCa

mk ; ð201Þ

W aSCF
lm ¼

Xocca

ka

Ca
lkCa

mke
a
k ; ð202Þ

with corresponding equations for the b SCF matrices.
The final MP2 densities PMP2

lm and W MP2
lm are contracted

with the one-electron Hamiltonian derivatives H xð Þ
lm and

overlap derivatives S xð Þ
lm , respectively.

The total frozen-core two-particle density matrix is
evaluated by adding the two-particle density correction
to the SCF two-particle density,

CMP2
lmkr ¼ C 2ð Þ

lmkr þ CSCF
lmkr ; ð203Þ

where

CSCF
lmkr ¼

1

2
P SCF

lm P SCF
kr � 1

4
P SCF

lk P SCF
mr ð204Þ

for the closed-shell case, and

CSCF
lmkr ¼

1

2

�
P aSCF

lm P aSCF
kr � P aSCF

lk P aSCF
mr þ P aSCF

lm P bSCF
kr

þP bSCF
lm PbSCF

kr � P bSCF
lk P bSCF

mr þ P bSCF
lm P aSCF

kr

�
ð205Þ

for the unrestricted case. CMP2
lmkr is then contracted with

the two-electron AO derivatives.
This finishes all the terms necessary for the evaluation

of the closed-shell frozen-orbital MP2 gradient (Eq. 24).

7 Reduction in computational effort

Having identified the summation ranges, the computa-
tional effort required for the frozen-orbital MP2
gradient computation compared to that required in the
full MP2 gradient computation may be examined.

7.1 Time savings in the two-electron transformation

Inspection of the last two terms in the closed-shell MP2
Lagrangian (Eq. 159), the diagonal blocks of the MP2
density correction (Eqs. 176, 177, 178, 179), and all
the MP2 energy-weighted density correction [I] terms
(Eqs. 181, 182, 183) reveals that their formation requires
a subset of the transformed integrals required for the
corresponding full MP2 terms,

ðlmjkrÞ!ðjpjqrÞ fullMP2: j¼occ; p¼vall; q¼all; r¼all

frozen�core MP2: j¼act; p¼vact; q¼all; r¼all :

The transformations may be carried out by first
performing a one-index transformation producing
integrals of the type (jm|kr), with the remaining indices
transformed stepwise to produce the full set [21].

If kr is treated as a combined index, the memory
required to hold all (jm|kr) integrals isN2(N+1)n/2,where
N is the number of basis functions, and n is the number of

active orbitals (for full MP2, n is all occupied orbitals).
The reduction inmemory requirements on going from full
MP2 to frozen-core MP2, then, is N2(N+1)C/2, where C
is the number of frozen cores. Usually, even with such a
reduction, an inadequate amount of memory is available
and the transformation is carried out in batches. So, more
important than the memory reduction is the time saving
that accrues as a consequence of the reduction in the
number of batches of integrals that one needs to transform
for frozen-core MP2 relative to full MP2.

The available memory determines the number of
active orbitals j transformed in each batch. The mini-
mum memory requirement is then N2(N+1)/2 for one
orbital to be transformed per batch (this is the same for
the full and frozen-core cases). This requires n batches
for the full transformation. Clearly, then, by reducing n
from all occupied orbitals in the full MP2 to only active
occupied orbitals in the frozen-core MP2, the number
of batches required is reduced (by C in the minimum
memory case). This can result in substantial time
savings. A similar analysis of the time savings may be
done for the unrestricted case.

7.2 Time savings in the two-particle gradient

The nonseparable term of the two-particle gradient
(Eq. 136 or Eq. 189) corresponds to a back-transfor-
mation of the MP2 amplitudes. As in the two-electron
transformation described earlier, this back-transforma-
tion usually requires a batched scheme. As the occupied
summation in Eq. (136) or Eq. (189) only goes over
active occupied orbitals, the frozen-core scheme again
results in fewer batches and therefore substantial time
savings.

7.3 Terms that must be determined in the AO basis

Inspection of the closed-shell CPHF equations
(Eq. 163), the first two terms in the MP2 Lagrangian
(Eq. 159), and the energy-weighted density [III] correc-
tion term (Eq. 187) reveals that MO integrals of the type

jp qrjð Þ; where j ¼ occ; p ¼ all; q ¼ all; r ¼ all;

are required in the frozen-core MP2 as well as the full
MP2. If one wishes to take advantage of the savings in
computational effort discussed previously, these terms
must be evaluated in the AO basis.

Both Frisch et al. [2] and Dupuis et al. [22] have
described the formation of the first two terms of the
closed-shell MP2 Lagrangian (Eq. 159) in the AO basis.
The first two terms {1,2} of Eq. (159) are formed in
either a direct or conventional fashion by constructing
a Fock-like matrix,

L1;2
lm ¼

XAO

kr

Dkr 2 lm krjð Þ � lk mrjð Þf g ; ð206Þ

where
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Dkr ¼ �
Xocc

jk

CkjCrkPCS 2ð Þ
jk �

Xvall

bc

CkbCrcPCS 2ð Þ
bc : ð207Þ

Frisch et al. [2] also described how to solve the CPHF
equations in the AO basis. Equation (163) is rewritten as

Xvall

b

Xocc

j

ACS
aibjP

CS 2ð Þ
bj þ ea � eið ÞPCS 2ð Þ

ai ¼ LCS
ai ; ð208Þ

and the first term is evaluated with a trial P 2ð Þ
bj again by

forming a Fock-like matrix. The resulting P 2ð Þ
ai is used as

the next trial P 2ð Þ
bj , and the process is repeated until the

matrices are self-consistent. Once the solution is ob-

tained and P 2ð Þ
pq is completed, the energy-weighted den-

sity [III] term (Eq. 187) may be formed in the AO basis,

again by formation of a Fock-like matrix.
For the unrestricted case, the (aa) and (bb) MP2

Lagrangian contributions (see Eq. 98) may be formed in
the AO basis. This is done similarly to the closed-shell
case by forming the Fock-like matrices

LlmðaaÞ ¼
XAO

kr

DkrðaaÞf2ðlmjkrÞ� ðlkjmrÞ� ðlrjmkÞg

þ
XAO

kr

DkrðbbÞf2ðlmjkrÞg ; ð209Þ

LlmðbbÞ ¼
XAO

kr

DkrðbbÞf2ðlmjkrÞ� ðlkjmrÞ� ðlrjmkÞg

þ
XAO

kr

DkrðaaÞf2ðlmjkrÞg ; ð210Þ

where

Dkr aað Þ ¼ �
Xocca

jaka

Ca
kjC

a
rkP 2ð Þ

jaka�
Xvalla

baca

Ca
kbCa

rcP 2ð Þ
baca ; ð211Þ

Dkr bbð Þ ¼ �
Xoccb

jbkb

Cb
kjC

b
rkP 2ð Þ

jbkb�
Xvallb

bbcb

Cb
kbCb

rcP 2ð Þ
bbcb : ð212Þ

The unrestricted CPHF equations may be solved
similarly to the closed-shell case described previously.
However, Eqs. (101) and (102) each contain contribu-
tions from P 2ð Þ

baja and P 2ð Þ
bbjb , so the equations must be

solved simultaneously until self-consistency is achieved.

8 Timings

The C2v isomer of the molecule silicocene (Fig. 3) was
chosen as a test case to demonstrate the reduction in
computational effort due to the frozen-core approx-
imation. Silicocene is a group 14 analog of ferrocene,
and its molecular and electronic structure, as well as its
reactivity, have been studied by many researchers [23,

24, 25, 26, 27, 28, 29, 30, 31]. In the timing calculations
reported here, a triple-zeta plus polarization basis set
was employed. For carbon and hydrogen, the 6-311G
basis set of Krishnan et al. [32] was utilized; for silicon,
the McLean and Chandler basis set was used [33]. The
d and p polarization functions added are the default
values in GAMESS. This basis set gives rise to 277 basis
functions. Calculations were carried out on the ground
singlet state of silicocene using the closed-shell MP2
code in GAMESS. Triplet state calculations were carried
out using the UMP2 code in GAMESS. One full MP2
single-point gradient calculation and one frozen-core
MP2 single-point gradient calculation were carried out
for each state. The number of core orbitals is 15. For the
closed-shell calculation, there are 27 valence orbitals;
therefore, the full MP2 closed-shell calculation involves
42 active occupied orbitals, while the frozen-core cal-
culation involves 27 active occupied orbitals. For the
triplet calculation, there are 28 a and 26 b valence
orbitals; thus, the full UMP2 calculation requires 43 a
and 41 b active occupied orbitals, while the frozen-
core UMP2 calculation involves 28 a and 26 b active
occupied orbitals. The minimum amount of memory
required for the full UMP2 calculation on the triplet
is about 43 Mwords. Fifty Mwords were used, so only
one a and one b orbital could be transformed per batch.
The minimum amount of memory required for the
transformation of one closed-shell orbital is about
11 Mwords, so four orbitals could be transformed per
batch for this calculation.

The timings for the calculations are shown in Table 1.
All calculations were performed on an ultra SPARC2
300 MHz processor using 50 Mwords of memory. The
overall speedup of 1.4–1.7 is mainly due to the decrease
in the number of batches required in the transformation
step. The time required for an unrestricted open-shell

Fig. 3. The C2v isomer of silicocene
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calculation is about 3 times that for a comparable
closed-shell calculation.

9 Conclusion

A detailed derivation of the frozen-orbital MP2 gradient
has been presented. The density matrix contributions
and CPHF equations were explicitly derived in the spin-
orbital basis and reduced to the unrestricted open-shell
and restricted closed-shell cases. Details of summation
ranges and other modifications resulting from the
frozen-orbital approximation have been presented.

Having determined the appropriate expressions and
their summation ranges, the reduction in computational
effort resulting from the frozen-orbital approximation
has been examined. The main reduction in time is due to
the decrease in the number of batches required in
transformation steps. Test calculations on silicocene
show that this time reduction can be considerable,
especially when the memory available is close to the
minimum required.
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Table 1. The total and a breakdown of the computation time for the full and frozen-core second-order perturbation theory (MP2) single-
point gradient calculations on silicocene [Si(C5H5)2]. There are 277 basis functions. All calculations were carried out using an ultra
SPARC2 300 MHz processor using 50 M words of memory

Step in algorithm Computation time (s)

Two-electron transformation
and MP2 energy

Coupled perturbed
Hartree–Fock

Two-electron
gradient

Total

Full closed-shell MP2 gradient 6,703.1 749.04 4,893.89 15,173.6
Frozen-core closed-shell MP2 gradient 5,137.5 785.1 3,052.7 10,754.8
Speedup for closed-shell calculation 1.30 0.95 1.60 1.41
Full open-shell unrestricted MP2 gradient 32,441.6 1,300.6 8,349.6 51,677.1
Frozen-core open-shell unrestricted MP2 gradient 18,602.4 1,368.8 5,865.3 30,849.2
Speedup for open-shell calculation 1.74 0.95 1.42 1.68
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